ResearchPad - chromosomal-aberrations https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis]]> https://www.researchpad.co/article/elastic_article_14642 Copy number variants comprise a large proportion of variation in human genomes. Large rare CNVs, especially those disrupting genes or changing the dosages of genes, can carry relatively strong risks for neurodevelopmental and neuropsychiatric disorders. Kernel-based association methods have been developed for the analysis of rare CNVs and shown to be a valuable tool. Kernel methods model the collective effect of rare CNVs using flexible kernel functions that capture the characteristics of CNVs and measure CNV similarity of individual pairs. Typically kernels are created by summarizing similarity within an artificially defined “CNV locus” and then collapsing across all loci. In this work, we propose a new kernel-based test, CONCUR, that is based on the CNV location information contained in standard processing of the variants and which obviates the need for arbitrarily defined CNV loci. CONCUR quantifies similarity between individual pairs as the common area under their copy number profile curves and is designed to detect CNV dosage, length and dosage-length interaction effects. In simulation studies and real data analysis, we demonstrate the ability of the CONCUR test to detect CNV effects under diverse CNV architectures with power and robustness over existing methods.

]]>
<![CDATA[Molecular Cytogenetic Characterization of New Wheat-Rye 1R(1B) Substitution and Translocation Lines from a Chinese Secale cereal L. Aigan with Resistance to Stripe Rust]]> https://www.researchpad.co/article/5989dadfab0ee8fa60bbb434

Secale cereale L. has been used worldwide as a source of genes for agronomic and resistance improvement. In this study, a stable wheat-rye substitution line and 3 primary 1RS.1BL translocation lines were selected from the progeny of the crossing of the Chinese local rye Aigan variety and wheat cultivar Mianyang11. The substitution and translocation lines were identified by molecular cytogenetic analysis. PCR results, fluorescence in situ hybridization and acid polyacrylamide gel electrophoresis indicated that there were a pair of 1R chromosomes in the substitution line which have been named RS1200-3, and a pair of 1RS.1BL translocation chromosomes in the other 3 translocation lines, which have been named RT1163-4, RT1217-1, and RT1249. When inoculated with stripe rust isolates, these 4 lines expressed high resistance to several Puccinia striiformis f. sp Tritici pathotypes that are virulent on Yr9. Moreover, the different response pattern of resistance among them suggested that the diversity of resistance genes for wheat stripe rust exists in the rye. These 4 lines also showed better agronomic performances than their wheat parent. The GS indices also showed the genetic diversity of the 1RS which derived from same rye variety. The present study indicates that rye cultivars may carry untapped variations that could potentially be used for wheat improvement.

]]>
<![CDATA[Sex-Linked Chromosome Heterozygosity in Males of Tityus confluens (Buthidae): A Clue about the Presence of Sex Chromosomes in Scorpions]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7d7d

Scorpions of the genus Tityus show holokinetic chromosomes, achiasmatic male meiosis and an absence of heteromorphic sex chromosomes, like all Buthidae. In this work, we analysed the meiotic behaviour and chromosome rearrangements of a population of the scorpion Tityus confluens, characterising the cytotypes of males, females and embryos with different cytogenetic techniques. This revealed that all the females were structural homozygotes, while all the males were structural heterozygotes for different chromosome rearrangements. Four different cytotypes were described in males, which differed in chromosome number (2n = 5 and 2n = 6) and meiotic multivalent configurations (chains of four, five and six chromosomes). Based on a detailed mitotic and meiotic analysis, we propose a sequence of chromosome rearrangements that could give rise to each cytotype and in which fusions have played a major role. Based on the comparison of males, females and a brood of embryos, we also propose that the presence of multivalents in males and homologous pairs in females could be associated with the presence of cryptic sex chromosomes, with the male being the heterogametic sex. We propose that the ancestral karyotype of this species could have had homomorphic XY/XX (male/female) sex chromosomes and a fusion could have occurred between the Y chromosome and an autosome.

]]>
<![CDATA[Genetic Evidence for Genotoxic Effect of Entecavir, an Anti-Hepatitis B Virus Nucleotide Analog]]> https://www.researchpad.co/article/5989db46ab0ee8fa60bd8921

Nucleoside analogues (NAs) have been the most frequently used treatment option for chronic hepatitis B patients. However, they may have genotoxic potentials due to their interference with nucleic acid metabolism. Entecavir, a deoxyguanosine analog, is one of the most widely used oral antiviral NAs against hepatitis B virus. It has reported that entecavir gave positive responses in both genotoxicity and carcinogenicity assays. However the genotoxic mechanism of entecavir remains elusive. To evaluate the genotoxic mechanisms, we analyzed the effect of entecavir on a panel of chicken DT40 B-lymphocyte isogenic mutant cell line deficient in DNA repair and damage tolerance pathways. Our results showed that Parp1-/- mutant cells defective in single-strand break (SSB) repair were the most sensitive to entecavir. Brca1-/-, Ubc13-/- and translesion-DNA-synthesis deficient cells including Rad18-/- and Rev3-/- were hypersensitive to entecavir. XPA-/- mutant deficient in nucleotide excision repair was also slightly sensitive to entecavir. γ-H2AX foci forming assay confirmed the existence of DNA damage by entecavir in Parp1-/-, Rad18-/- and Brca1-/- mutants. Karyotype assay further showed entecavir-induced chromosomal aberrations, especially the chromosome gaps in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- cells when compared with wild-type cells. These genetic comprehensive studies clearly identified the genotoxic potentials of entecavir and suggested that SSB and postreplication repair pathways may suppress entecavir-induced genotoxicity.

]]>
<![CDATA[A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice]]> https://www.researchpad.co/article/5989db12ab0ee8fa60bcc6f6

Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype.

]]>
<![CDATA[Divergent Development of Hexaploid Triticale by a Wheat – Rye –Psathyrostachys huashanica Trigeneric Hybrid Method]]> https://www.researchpad.co/article/5989da1eab0ee8fa60b7de7e

Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement.

]]>
<![CDATA[Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0fc8

Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust.

]]>
<![CDATA[A Hidden Markov Model Approach for Simultaneously Estimating Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary Ploidy]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd131

Admixture—the mixing of genomes from divergent populations—is increasingly appreciated as a central process in evolution. To characterize and quantify patterns of admixture across the genome, a number of methods have been developed for local ancestry inference. However, existing approaches have a number of shortcomings. First, all local ancestry inference methods require some prior assumption about the expected ancestry tract lengths. Second, existing methods generally require genotypes, which is not feasible to obtain for many next-generation sequencing projects. Third, many methods assume samples are diploid, however a wide variety of sequencing applications will fail to meet this assumption. To address these issues, we introduce a novel hidden Markov model for estimating local ancestry that models the read pileup data, rather than genotypes, is generalized to arbitrary ploidy, and can estimate the time since admixture during local ancestry inference. We demonstrate that our method can simultaneously estimate the time since admixture and local ancestry with good accuracy, and that it performs well on samples of high ploidy—i.e. 100 or more chromosomes. As this method is very general, we expect it will be useful for local ancestry inference in a wider variety of populations than what previously has been possible. We then applied our method to pooled sequencing data derived from populations of Drosophila melanogaster on an ancestry cline on the east coast of North America. We find that regions of local recombination rates are negatively correlated with the proportion of African ancestry, suggesting that selection against foreign ancestry is the least efficient in low recombination regions. Finally we show that clinal outlier loci are enriched for genes associated with gene regulatory functions, consistent with a role of regulatory evolution in ecological adaptation of admixed D. melanogaster populations. Our results illustrate the potential of local ancestry inference for elucidating fundamental evolutionary processes.

]]>
<![CDATA[Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15]]> https://www.researchpad.co/article/5989da64ab0ee8fa60b91893

We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

]]>
<![CDATA[Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior]]> https://www.researchpad.co/article/5989d9f8ab0ee8fa60b711f8

Copy number variants (CNVs) were detected and analyzed in 14 probands with autism and intellectual disability with self-injurious behavior (SIB) resulting in tissue damage. For each proband we obtained a clinical history and detailed behavioral descriptions. Genetic anomalies were observed in all probands, and likely clinical significance could be established in four cases. This included two cases having novel, de novo copy number variants and two cases having variants likely to have functional significance. These cases included segmental trisomy 14, segmental monosomy 21, and variants predicted to disrupt the function of ZEB2 (encoding a transcription factor) and HTR2C (encoding a serotonin receptor). Our results identify variants in regions previously implicated in intellectual disability and suggest candidate genes that could contribute to the etiology of SIB.

]]>
<![CDATA[Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization]]> https://www.researchpad.co/article/5989daebab0ee8fa60bbf4f1

Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology.

]]>
<![CDATA[Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae]]> https://www.researchpad.co/article/5989da4dab0ee8fa60b8d31f

Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6.

]]>
<![CDATA[Recurrent Microdeletions at Xq27.3-Xq28 and Male Infertility: A Study in the Czech Population]]> https://www.researchpad.co/article/5989dab3ab0ee8fa60bac144

Background

Genetic causes of male infertility are hypothesized to involve multiple types of mutations, from single gene defects to complex chromosome rearrangements. Recently, several recurrent X-chromosome microdeletions (located in subtelomeric region of the long arm) were reported to be associated with male infertility in Spanish and Italian males. The aim of our study was to test their prevalence and infertility association in population of men from the Czech Republic.

Methods

107 males with pathological sperm evaluation resulting in nonobstructive infertility were compared to 131 males with normal fecundity. X-chromosome microdeletions were assessed by +/- PCR with three primer pairs for each region Xcnv64 (Xq27.3), Xcnv67 (Xq28) and Xcnv69 (Xq28). The latter microdeletion was further characterized by amplification across the deleted region, dividing the deletion into three types; A, B and C.

Results

We detected presence of isolated Xcnv64 deletion in 3 patients and 14 controls, and Xcnv69 in 3 patients and 6 controls (1 and 1 patient vs.4 and 1 control for types A and B respectively). There was one control with combined Xcnv64 and Xcnv69 type B deletions, and one patient with combination of Xcnv64 and Xcnv69 type C deletions. The frequency of the deletions was thus not higher in patient compared to control group, Xcnv64 was marginally associated with controls (adjusted Fisher´s exact test P = 0.043), Xcnv69 was not associated (P = 0.452). We excluded presence of more extensive rearrangements in two subjects with combined Xcnv64 and Xcnv69 deletions. There was no Xcnv67 deletion in our cohort.

Conclusion

In conclusion, the two previously reported X-linked microdeletions (Xcnv64 and Xcnv69) do not seem to confer a significant risk to impaired spermatogenesis in the Czech population. The potential clinical role of the previously reported patient-specific Xcnv67 remains to be determined in a larger study population.

]]>
<![CDATA[Integrative Variation Analysis Reveals that a Complex Genotype May Specify Phenotype in Siblings with Syndromic Autism Spectrum Disorder]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcc9a

It has been proposed that copy number variations (CNVs) are associated with increased risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, contribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization (aCGH) and exome sequencing, together with systems genetics and network analyses, are being used as tools for the study of complex disorders of unknown etiology, especially those characterized by significant genetic and phenotypic heterogeneity. Therefore, to characterize the complex genotype-phenotype relationship, we performed aCGH and sequenced the exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual disability, searching for de novo CNVs, as well as for de novo and rare inherited point variations—single nucleotide variants (SNVs) or small insertions and deletions (indels)—with probable functional impacts. With aCGH, we identified, in both siblings, a duplication in the 4p16.3 region and a deletion at 8p23.3, inherited by a paternal balanced translocation, t(4, 8) (p16; p23). Exome variant analysis found a total of 316 variants, of which 102 were shared by both siblings, 128 were in the male sibling exome data, and 86 were in the female exome data. Our integrative network analysis showed that the siblings’ shared translocation could explain their similar syndromic phenotype, including overgrowth, macrocephaly, and intellectual disability. However, exome data aggregate genes to those already connected from their translocation, which are important to the robustness of the network and contribute to the understanding of the broader spectrum of psychiatric symptoms. This study shows the importance of using an integrative approach to explore genotype-phenotype variability.

]]>
<![CDATA[Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology]]> https://www.researchpad.co/article/5989da83ab0ee8fa60b9b574

Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs of small metacentric chromosomes. We performed cytogenetic analyses for chromosomes of one commonly used inbred line of M. lignano (called DV1) and uncovered unexpected chromosome number variation in the form of aneuploidies of the largest chromosomes. These results prompted us to perform karyotypic studies in individual specimens of this and other lines of M. lignano reared under laboratory conditions, as well as in freshly field-collected specimens from different natural populations. Our analyses revealed a high frequency of aneuploids and in some cases other numerical and structural chromosome abnormalities in laboratory-reared lines of M. lignano, and some cases of aneuploidy were also found in freshly field-collected specimens. Moreover, karyological analyses were performed in specimens of three further species: Macrostomum sp. 8 (a close relative of M. lignano), M. spirale and M. hystrix. Macrostomum sp. 8 showed a karyotype that was similar to that of M. lignano, with tetrasomy for its largest chromosome being the most common karyotype, while the other two species showed a simpler karyotype that is more typical of the genus Macrostomum. These findings suggest that M. lignano and Macrostomum sp. 8 can be used as new models for studying processes of partial genome duplication in genome evolution.

]]>
<![CDATA[Centromere-Independent Accumulation of Cohesin at Ectopic Heterochromatin Sites Induces Chromosome Stretching during Anaphase]]> https://www.researchpad.co/article/5989da0dab0ee8fa60b7846e

Live imaging of cells carrying rearranged chromosomes shows that misplaced heterochromatin is sufficient to induce ectopic cohesion and chromosome stretching during mitosis, and may compromise genetic stability.

]]>
<![CDATA[Genetic variation for resistance to high temperature stress of mature sperm – a study in Drosophila]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc620

Genetic variation for resistance to heat stress has been found for a number of life-history components in Drosophila species. For male and female fertility (or sterility), stress resistance of the parents is confounded with stress resistance of the haploid gametes. Many genes are known to influence male fertility in Drosophila melanogaster. Some may carry temperature sensitive alleles that reduce fertility through effects on mature sperm when exposed to heat stress. In this study, sperm from each of 320 males were either not heat shocked (control) or exposed to a heat shock (36.9°C for 2 hours) either in the male testes or in the female reproductive tract. We did not detect any temperature sensitive sterility alleles. These results are relevant in relation to haploid gene expression and the findings of considerable amounts of mRNA in mature sperm, potentially important for sperm function and fertilization.

]]>
<![CDATA[Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf319

Microhomology (MH) flanking a DNA double-strand break (DSB) drives chromosomal rearrangements but its role in mutagenesis has not yet been analyzed. Here we determined the mutation frequency of a URA3 reporter gene placed at multiple locations distal to a DSB, which is flanked by different sizes (15-, 18-, or 203-bp) of direct repeat sequences for efficient repair in budding yeast. Induction of a DSB accumulates mutations in the reporter gene situated up to 14-kb distal to the 15-bp MH, but more modestly to those carrying 18- and 203-bp or no homology. Increased mutagenesis in MH-mediated end joining (MMEJ) appears coupled to its slower repair kinetics and the extensive resection occurring at flanking DNA. Chromosomal translocations via MMEJ also elevate mutagenesis of the flanking DNA sequences 7.1 kb distal to the breakpoint junction as compared to those without MH. The results suggest that MMEJ could destabilize genomes by triggering structural alterations and increasing mutation burden.

]]>
<![CDATA[Lumican and versican protein expression are associated with colorectal adenoma-to-carcinoma progression]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf62d

Background

One prominent event associated with colorectal adenoma-to-carcinoma progression is genomic instability. Approximately 85% of colorectal cancer cases exhibit chromosomal instability characterized by accumulation of chromosome copy number aberrations (CNAs). Adenomas with gain of chromosome 8q, 13q, and/or 20q are at high risk of progression to cancer. Tumor progression is also associated with expansion of the extracellular matrix (ECM) and the activation of non-malignant cells within the tumor stroma. The glycoproteins versican and lumican are overexpressed at the mRNA level in colon carcinomas compared to adenomas, and are associated with the formation of tumor stroma.

Purpose

The aim of this study was to characterize versican and lumican protein expression in tumor progression and investigate their association with CNAs commonly associated with adenoma-to-carcinoma progression.

Methods

Tissue microarrays were constructed with colon adenomas and carcinomas that were characterized for MSI-status and DNA copy number gains of chromosomes 8q, 13q and 20q. Sections were immunohistochemically stained for lumican and versican. Protein expression levels were evaluated using digitized slides, and scores were finally dichotomized into a positive or negative score per sample.

Results

Lumican and versican expression were both observed in neoplastic cells and in the tumor stroma of colon adenomas and carcinomas. Lumican expression was more frequently present in epithelial cells of carcinomas than adenomas (49% versus 18%; P = 0.0001) and in high-risk adenomas and carcinomas combined compared to low-risk adenomas (43% versus 16%; P = 0.005). Versican staining in the tumor stroma was more often present in high-risk adenomas combined with carcinomas compared to low-risk adenomas (57% versus 36%; P = 0.03) and was associated with the presence of gain of 13q (71% versus 44%; P = 0.04).

Conclusion

Epithelial lumican and stromal versican protein expression are increased during colorectal adenoma-to-carcinoma progression.

]]>
<![CDATA[A Method for Checking Genomic Integrity in Cultured Cell Lines from SNP Genotyping Data]]> https://www.researchpad.co/article/5989da46ab0ee8fa60b8bc2b

Genomic screening for chromosomal abnormalities is an important part of quality control when establishing and maintaining stem cell lines. We present a new method for sensitive detection of copy number alterations, aneuploidy, and contamination in cell lines using genome-wide SNP genotyping data. In contrast to other methods designed for identifying copy number variations in a single sample or in a sample composed of a mixture of normal and tumor cells, this new method is tailored for determining differences between cell lines and the starting material from which they were derived, which allows us to distinguish between normal and novel copy number variation. We implemented the method in the freely available BCFtools package and present results based on induced pluripotent stem cell lines obtained in the HipSci project.

]]>