ResearchPad - climate-change https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Temperature and preeclampsia: Epidemiological evidence that perturbation in maternal heat homeostasis affects pregnancy outcome]]> https://www.researchpad.co/article/elastic_article_15767 This study aims to determine the association between temperature and preeclampsia and whether it is affected by seasonality and rural/urban lifestyle.MethodsThis cohort study included women who delivered at our medical center from 2004 to 2013 (31,101 women, 64,566 deliveries). Temperature values were obtained from a spatiotemporally resolved estimation model performing predictions at a 1×1km spatial resolution. In “Warm” pregnancies >50% of gestation occurred during the spring-summer period. In cold pregnancies >50% of gestation occurred during the fall and winter. Generalized estimating equation multivariable models were used to estimate the association between temperature and incidence of preeclampsia.Results1) The incidence of preeclampsia in at least one pregnancy was 7% (2173/64,566); 2) during “warm” pregnancies, an elevation of one IQR of the average temperature in the 1st or the 3rd trimesters was associated with an increased risk to develop preeclampsia [patients with Jewish ethnicity: 1st trimester: relative risk (RR) of 2.38(95%CI 1.50; 3.80), 3rd trimester 1.94(95%CI 1.34;2.81); Bedouins: 1st trimester: RR = 2.91(95%CI 1.98;4.28), 3rd trimester: RR = 2.37(95%CI 1.75;3.20)]; 3) In “cold” pregnancies, an elevation of one IQR of average temperature was associated with a lower risk to develop preeclampsia among patients with Bedouin-Arab ethnicity RR = 0.68 (95% CI 0.49–0.94) for 1st trimester and RR = 0.62 (95% CI 0.44–0.87) for 3rd trimester.Conclusions1) Elevated averaged temperature during the 1st or 3rd trimesters in “warm” pregnancies confer an increased risk for the development of preeclampsia, especially in nomadic patients; 2) Of interest, during cold pregnancies, elevated averaged temperature was associated with a lower risk to develop preeclampsia for nomadic patients. 3) These findings suggest temperature might be associated with perturbations in maternal heat homeostasis resulting in reallocation of energy resources and their availability to the fetus that may increase the risk for preeclampsia. This observation is especially relevant in the context of global warming and its effects on maternal/fetal reproductive health. ]]> <![CDATA[Methods for Estimating Wet Bulb Globe Temperature From Remote and Low‐Cost Data: A Comparative Study in Central Alabama]]> https://www.researchpad.co/article/elastic_article_15088 A variety of proxy methods offered reasonable estimates of wet bulb globe temperature (WBGT) in downtown and suburban Birmingham, ALEstimating WBGT from easily accessible measurements could be a powerful tool for studies and interventions related to heat stress

]]>
<![CDATA[Unpacking emotional contexts of post-truth.]]> https://www.researchpad.co/article/elastic_article_10986 <![CDATA[Exploring the Paradox of Increased Global Health and Degraded Global Environment: How Much Borrowed Time Is Humanity Living on?]]> https://www.researchpad.co/article/Naac92970-d402-4070-a3c1-7b4596659e95 We have overlooked the apparent paradox of increasing global health status and declining ecological and environmental qualityResource banks, and their largely undervalued nature, hold the key to understanding the global health‐environment balanceMuch more work needs to focus on ripple effects from exploitation of nonrenewable, and nonreplaceable resources

]]>
<![CDATA[Substrate rugosity and temperature matters: patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic]]> https://www.researchpad.co/article/N7c59bde4-0dbb-4a33-a228-9eb85bb49e49

Modeling and forecasting ocean ecosystems in a changing world will require advances in observational efforts to monitor marine biodiversity. One of the observational challenges in coastal reef ecosystems is to quantify benthic and climate interactions which are key to community dynamics across habitats. Habitat complexity (i.e., substrate rugosity) on intertidal reefs can be an important variable explaining benthic diversity and taxa composition, but the association between substrate and seasonal variability is poorly understood on lateritic reefs in the South Atlantic. We asked if benthic assemblages on intertidal reefs with distinct substrate rugosity would follow similar seasonal patterns of succession following meteo-oceanographic variability in a tropical coastal area of Brazil. We combined an innovative 3D imaging for measuring substrate rugosity with satellite monitoring to monitor spatio-temporal patterns of benthic assemblages. The dataset included monthly in situ surveys of substrate cover and taxon diversity and richness, temporal variability in meteo-oceanographic conditions, and reef structural complexity from four sites on the Eastern Marine Ecoregion of Brazil. Additionally, correlation coefficients between temperature and both benthic diversity and community composition from one year of monitoring were used to project biodiversity trends under future warming scenarios. Our results revealed that benthic diversity and composition on intertidal reefs are strongly regulated by surface rugosity and sea surface temperatures, which control the dominance of macroalgae or corals. Intertidal reef biodiversity was positively correlated with reef rugosity which supports previous assertions of higher regional intertidal diversity on lateritic reefs that offer increased substrate complexity. Predicted warming temperatures in the Eastern Marine Ecoregion of Brazil will likely lead to a dominance of macroalgae taxa over the lateritic reefs and lower overall benthic diversity. Our findings indicate that rugosity is not only a useful tool for biodiversity mapping in reef intertidal ecosystems but also that spatial differences in rugosity would lead to very distinct biogeographic and temporal patterns. This study offers a unique baseline of benthic biodiversity on coastal marine habitats that is complementary to worldwide efforts to improve monitoring and management of coastal reefs.

]]>
<![CDATA[Future trends of water resources and influences on agriculture in China]]> https://www.researchpad.co/article/N87c2566a-6970-4c5f-9ecf-ecac024e386a

Water resources are indispensable for all social-economic activities and ecosystem functions. In addition, changes in water resources have great significance for agricultural production. This paper uses five global climate models from CMIP5 to evaluate the future spatiotemporal variation in water resources in China under four RCP scenarios. The results show that the available precipitation significantly decreases due to evapotranspiration. Comparing the four RCP scenarios, the national average of the available precipitation is the highest under the RCP 2.6 and 4.5 scenarios, followed by that under the RCP 8.5 scenario. In terms of spatial distribution, the amount of available precipitation shows a decreasing trend from southeast to northwest. Regarding temporal changes, the available precipitation under RCP 8.5 exhibits a trend of first increasing and then decreasing, while the available precipitation under the RCP 6.0 scenario exhibits a trend of first decreasing and then increasing. Under the RCP 2.6 and 4.5 scenarios, the available precipitation increases, and the RCP 4.5 scenario has a higher rate of increase than that of RCP 2.6. In the context of climate change, changes in water resources and temperature cause widespread increases in potential agricultural productivity around Hu’s line, especially in southwestern China. However, the potential agricultural productivity decreases in a large area of southeastern China. Hu’s line has a partial breakthrough in the locking of agriculture, mainly in eastern Tibet, western Sichuan, northern Yunnan and northwestern Inner Mongolia. The results provide a reference for the management and deployment of future water resources and can aid in agricultural production in China.

]]>
<![CDATA[Alternative splicing and thermosensitive expression of Dmrt1 during urogenital development in the painted turtle, Chrysemys picta]]> https://www.researchpad.co/article/Ne4a490eb-6b94-4eef-b56e-0ca83edfa95f

Background

The doublesex and mab-3 related transcription factor 1 (Dmrt1) is a highly conserved gene across numerous vertebrates and invertebrates in sequence and function. Small aminoacid changes in Dmrt1 are associated with turnovers in sex determination in reptiles. Dmrt1 is upregulated in males during gonadal development in many species, including the painted turtle, Chrysemys picta, a reptile with temperature-dependent sex determination (TSD). Dmrt1 is reported to play different roles during sex determination and differentiation, yet whether these functions are controlled by distinct Dmrt1 spliceoforms remains unclear. While Dmrt1 isoforms have been characterized in various vertebrates, no study has investigated their existence in any turtle.

Methods

We examine the painted turtle to identify novel Dmrt1 isoforms that may be present during urogenital development using PCR, profile their expression by RNA-seq across five embryonic stages at male- and female-producing temperatures, and validate their expression pattern via qPCR with transcript-specific fluorescent probes.

Results

A novel Dmrt1 spliceoform was discovered for the first time in chelonians, lacking exons 2 and 3 (Dmrt1 ΔEx2Ex3). Dmrt1 canonical and ΔEx2Ex3 transcripts were differentialy expressed by temperature at stages 19 and 22 in developing gonads of painted turtles, after the onset of sex determination, and displayed a significant male-biased expression pattern. This transcriptional pattern differs from studies in other turtles and vertebrates that reported Dmrt1 differential expression before or at the onset of sex determination. This study provides the first insight into Dmrt1 transcriptional diversity in turtles and opens the door for future functional studies of the alternative Dmrt1 transcript uncovered here.

Conclusions

The discovery of an isoform in turtles indicate that alternative splicing may be a common feature of Dmrt1 across vertebrates, as isoforms are also found in crocodilians, birds, mammals and fish, and this variation remains unexplained. The relatively late-onset of Dmrt1 expression observed here contrasts with other turtles, indicating that Dmrt1 is not the topmost male sex -determining factor in C. picta. When placed in a phylogenetic context, this discrepancy underscores the divergent regulation of Dmrt1, and of sexual development more generally, across vertebrates.

]]>
<![CDATA[Modeling the Relationship of Groundwater Salinity to Neonatal and Infant Mortality From the Bangladesh Demographic Health Survey 2000 to 2014]]> https://www.researchpad.co/article/N282f9af1-03b6-46af-ab8d-637967f089d1

Abstract

We evaluated the relationship of drinking water salinity to neonatal and infant mortality using Bangladesh Demographic Health Surveys of 2000, 2004, 2007, 2011, and 2014. Point data of groundwater electrical conductivity (EC)— a measure of salinity—were collated from the Bangladesh Water Development Board and digitizing salinity contour map. Data for groundwater dissolved elements (sodium, calcium, magnesium, and potassium) data came from a national hydrochemistry survey in Bangladesh. Point EC and dissolved minerals data were then interpolated over entire Bangladesh and extracted to each cluster location, the primary sampling unit of Bangladesh Demographic Health Surveys. We used restricted cubic splines and survey design‐specific logistic regression models to determine the relationship of water salinity to neonatal and infant mortality. A U‐shaped association between drinking water salinity and neonatal and infant mortality was found, suggesting higher mortality when salinity was very low and high. Compared to mildly saline (EC ≥0.7 and < 2 mS/cm) water drinkers, freshwater (EC < 0.7 mS/cm) drinkers had 1.37 (95% CI: 1.01, 1.84) times higher neonatal mortality and 1.43 (95% CI: 1.08, 1.89) times higher infant mortality. Compared to mildly saline water drinkers, severe‐saline (EC ≥10 mS/cm) water drinkers had 1.77 (95% CI: 1.17, 2.68) times higher neonatal mortality and 1.93 (95% CI: 1.35, 2.76) times higher infant mortality. We found that mild‐salinity water had a high concentration of calcium and magnesium, whereas severe‐salinity water had a high concentration of sodium. Freshwater had the least concentrations of salubrious calcium and magnesium.

]]>
<![CDATA[Population of the temperate mosquito, Culex pipiens, decreases in response to habitat climatological changes in future]]> https://www.researchpad.co/article/Nc80f32d5-17e1-4238-9793-c85a5a3de49a

Abstract

Predictions of the temporal distribution of vector mosquitoes are an important issue for human health because the response of mosquito populations to climate change could have implications for the risk of vector‐borne diseases. To elucidate the effects of climate change on mosquito populations inhabiting temperate regions, we developed a Physiology‐based Climate‐driven Mosquito Population model for temperate regions. For accurately reproducing the temporal patterns observed in mosquito populations, the key factors were identified by implementing the combinations of factors into the model. We focused on three factors: the effect of diapause, the positive effect of rainfall on larval carrying capacity, and the negative effect of rainfall as the washout mortality on aquatic stages. For each model, parameters were calibrated using weekly observation data of a Culex pipiens adult population collected in Tokyo, Japan. Based on its likelihood value, the model incorporating diapause, constant carrying capacity, and washout mortality was the best to replicate the observed data. By using the selected model and applying global climate model data, our results indicated that the mosquito population would decrease and adults’ active season would be shortened under future climate conditions. We found that incorporating the washout effect in the model settings or not caused a difference in the temporal patterns in the projected mosquito populations. This suggested that water resources in mosquito habitats in temperate regions should be considered for predicting the risk of vector‐borne diseases in such regions.

]]>
<![CDATA[Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America]]> https://www.researchpad.co/article/N1df86112-92c0-47c4-bc7e-b31b90b1d872

Abstract

Understanding the geographic distribution of mosquito‐borne disease and mapping disease risk are important for prevention and control efforts. Mosquito‐borne viruses (arboviruses), such as West Nile virus (WNV), are highly dependent on environmental conditions. Therefore, the use of environmental data can help in making spatial predictions of disease distribution. We used geocoded human case data for 2004–2017 and population‐weighted control points in combination with multiple geospatial environmental data sets to assess the environmental drivers of WNV cases and to map relative infection risk in South Dakota, USA. We compared the effectiveness of (1) land cover and physiography data, (2) climate data, and (3) spectral data for mapping the risk of WNV in South Dakota. A final model combining all data sets was used to predict spatial patterns of disease transmission and characterize the associations between environmental factors and WNV risk. We used a boosted regression tree model to identify the most important variables driving WNV risk and generated risk maps by applying this model across the entire state. We found that combining multiple sources of environmental data resulted in the most accurate predictions. Elevation, late‐season humidity, and early‐season surface moisture were the most important predictors of disease distribution. Indices that quantified interannual variability of climatic conditions and land surface moisture were better predictors than interannual means. We suggest that combining measures of interannual environmental variability with static land cover and physiography variables can help to improve spatial predictions of arbovirus transmission risk.

]]>
<![CDATA[Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satellite‐Based Observations in Detecting Outbreaks]]> https://www.researchpad.co/article/N1c514245-56ef-4185-b93e-7462d32dd374

Abstract

Rotavirus is the most common cause of diarrheal disease among children under 5. Especially in South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic extremes and safe water availability significantly influence diarrheal disease impacts in human populations, hydroclimatic information can be a potential tool for disease preparedness. In this study, we conducted a multivariate temporal and spatial assessment of 34 climate indices calculated from ground and satellite Earth observations to examine the role of temperature and rainfall extremes on the seasonality of rotavirus transmission in Bangladesh. We extracted rainfall data from the Global Precipitation Measurement and temperature data from the Moderate Resolution Imaging Spectroradiometer sensors to validate the analyses and explore the potential of a satellite‐based seasonal forecasting model. Our analyses found that the number of rainy days and nighttime temperature range from 16°C to 21°C are particularly influential on the winter transmission cycle of rotavirus. The lower number of wet days with suitable cold temperatures for an extended time accelerates the onset and intensity of the outbreaks. Temporal analysis over Dhaka also suggested that water logging during monsoon precipitation influences rotavirus outbreaks during a summer transmission cycle. The proposed model shows lag components, which allowed us to forecast the disease outbreaks 1 to 2 months in advance. The satellite data‐driven forecasts also effectively captured the increased vulnerability of dry‐cold regions of the country, compared to the wet‐warm regions.

]]>
<![CDATA[Identifying Source Regions and the Distribution of Cross‐Tropopause Convective Outflow Over North America During the Warm Season]]> https://www.researchpad.co/article/Nba38a661-9ecf-4b13-ba55-b636e4f23237

Abstract

We analyzed the interaction between the North American monsoon anticyclone (NAMA) and summertime cross‐tropopause convective outflow by applying a trajectory analysis to a climatology of convective overshooting tops (OTs) identified in GOES satellite images, which covers the domain from 29°S to 68°N and from 205 to 1.25°W for the time period of May through September 2013. With this analysis we identified seasonally, geographically, and altitude‐dependent variability in NAMA strength and in cross‐tropopause convection that control their interaction. We find that the NAMA has the strongest impact on the circulation of convectively influenced air masses in August. Over the entire time period examined the intertropical convergence zone contributes the majority of OTs with a larger fraction of total OTs at 370 K (on average 70%) than at 400 K (on average 52%). During August at 370 K, the convectively influenced air masses within the NAMA circulation, as determined by the trajectory analysis, are primarily sourced from the intertropical convergence zone (monthly average of 66.1%), while at 400 K the Sierra Madres and the Central United States combined constitute the dominant source region (monthly average of 44.1%, compared to 36.6% of the combined Intertropical Convergence Zone regions). When evaluating the impact of cross‐tropopause convection on the composition and chemistry of the upper troposphere and lower stratosphere, the effects of the NAMA on both the distribution of convective outflow and the residence time of convectively influenced air masses within the NAMA region must be considered.

]]>
<![CDATA[Effects of precipitation changes on soil bacterial community composition and diversity in the Junggar desert of Xinjiang, China]]> https://www.researchpad.co/article/N424d07f8-e35f-49e1-8200-e5cc9abf576f

Variation in precipitation can markedly affect the structure and function of soil microbial communities, especially in arid areas which are limited by water resources. Therefore, it is critical to understand how soil bacterial community composition and diversity will respond to variation in precipitation. In this study, we examined the soil bacterial community structure and diversity between five precipitation treatments (60% decrease, 30% decrease, control, 30% increase and 60% increase in precipitation) in the same arid site, in the Junggar desert of Xinjiang, northern China. The dominant bacterial phyla, present at similar frequencies in plots with different precipitation levels, were Actinobacteria, Proteobacteria, Bacteroidetes, Acidobacteria and Chloroflexi. The Shannon-Wiener and Chao1 indices of soil bacterial α-diversity were both positively correlated with plant diversity. Our results indicated that (1) extreme drought significantly decreased bacterial abundance and diversity compared with increased precipitation; (2) variation in precipitation did not change the dominant components of the bacterial communities; and (3) soil pH and total nitrogen concentration were the key factors affecting soil bacterial composition in the Junggar desert.

]]>
<![CDATA[Considering the Role of Adaptive Evolution in Models of the Ocean and Climate System]]> https://www.researchpad.co/article/Nfe9152c8-e79c-4817-9ec2-593d8a0ca732

Abstract

Numerical models have been highly successful in simulating global carbon and nutrient cycles in today's ocean, together with observed spatial and temporal patterns of chlorophyll and plankton biomass at the surface. With this success has come some confidence in projecting the century‐scale response to continuing anthropogenic warming. There is also increasing interest in using such models to understand the role of plankton ecosystems in past oceans. However, today's marine environment is the product of billions of years of continual evolution—a process that continues today. In this paper, we address the questions of whether an assumption of species invariance is sufficient, and if not, under what circumstances current model projections might break down. To do this, we first identify the key timescales and questions asked of models. We then review how current marine ecosystem models work and what alternative approaches are available to account for evolution. We argue that for timescales of climate change overlapping with evolutionary timescales, accounting for evolution may to lead to very different projected outcomes regarding the timescales of ecosystem response and associated global biogeochemical cycling. This is particularly the case for past extinction events but may also be true in the future, depending on the eventual degree of anthropogenic disruption. The discipline of building new numerical models that incorporate evolution is also hugely beneficial in itself, as it forces us to question what we know about adaptive evolution, irrespective of its quantitative role in any specific event or environmental changes.

]]>
<![CDATA[Efficacy of Climate Forcings in PDRMIP Models]]> https://www.researchpad.co/article/N277a3652-7bfa-4ad6-af18-e20af9ecbbd6

Abstract

Quantifying the efficacy of different climate forcings is important for understanding the real‐world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near‐surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy‐induced bias of ±0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend.

]]>
<![CDATA[Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries]]> https://www.researchpad.co/article/N1dd11cc4-1cd6-404e-8c74-4b242dc87ec9

Abstract

This study investigates the atmospheric drivers of severe precipitation deficits in the Greater Alpine Region during the last 210 years utilizing a daily atmospheric circulation type reconstruction. Precipitation deficit tends to be higher during periods with more frequent anticyclonic (dry) and less frequent cyclonic (wet) circulation types, as would be expected. However, circulation characteristics are not the main drivers of summer precipitation deficit. Dry soils in the warm season tend to limit precipitation, which is particularly the case for circulation types that are sensitive to a soil moisture‐precipitation feedback. This mechanism is of specific relevance in explaining the major drought decades of the 1860s and 1940s. Both episodes show large negative precipitation anomalies in spring followed by increasing frequencies of circulation types sensitive to soil moisture precipitation feedbacks. The dry springs of the 1860s were likely caused by circulation characteristics that were quite different from those of recent decades as a consequence of the large spatial extent of Arctic sea ice at the end of the Little Ice Age. On the other hand, the dry springs of the 1940s developed under a persistent positive pressure anomaly across Western and Central Europe, triggered by positive sea surface temperatures in the western subtropical Atlantic.

]]>
<![CDATA[Quantifying the Timescale and Strength of Southern Hemisphere Intraseasonal Stratosphere‐troposphere Coupling]]> https://www.researchpad.co/article/Ne2d0b07a-2452-4f6d-ba26-c3d3b5569795

Abstract

The Southern Hemisphere zonal circulation manifests a downward influence of the stratosphere on the troposphere from late spring to early summer. However, the strength and timescale of the connection, given the stratospheric state, have not been explicitly quantified. Here, SH zonal wind reanalysis time series are analyzed with a methodology designed to detect the minimal set of statistical predictors of multiple interacting variables via conditional independence tests. Our results confirm from data that the variability of the stratospheric polar vortex is a predictor of the tropospheric eddy‐driven jet between September and January. The vortex variability explains about 40% of monthly mean jet variability at a lead time of 1 month and can entirely account for the observed jet persistence. Our statistical model can quantitatively connect the multidecadal trends observed in the vortex and jet during the satellite era. This shows how short‐term variability can help understand statistical links in long‐term changes.

]]>
<![CDATA[Analysis and prediction of vegetation dynamics under the background of climate change in Xinjiang, China]]> https://www.researchpad.co/article/Ne0ba72e6-0c27-427b-bc7e-351cd98443bf

Background

Vegetation dynamics is defined as a significant indictor in regulating terrestrial carbon balance and climate change, and this issue is important for the evaluation of climate change. Though much work has been done concerning the correlations among vegetation dynamics, precipitation and temperature, the related questions about relationships between vegetation dynamics and other climatic factors (e.g., specific humidity, net radiation, soil moisture) have not been thoroughly considered. Understanding these questions is of primary importance in developing policies to address climate change.

Methods

In this study, the least squares regression analysis method was used to simulate the trend of vegetation dynamics based on the normalized difference vegetation index (NDVI) from 1981 to 2018. A partial correlation analysis method was used to explore the relationship between vegetation dynamics and climate change; and further,the revised greyscale model was applied to predict the future growth trend of natural vegetation.

Results

The Mann-Kendall test results showed that th e air temperature rose sharply in 1997 and had been in a state of high fluctuations since then. Strong changes in hydrothermal conditions had major impact on vegetation dynamics in the area. Specifically, the NDVI value of natural vegetation showed an increasing trend from 1981 to 2018, and the same changes occurred in the precipitation. From 1981 to 1997, the values of natural vegetation increased at a rate of 0.0016 per year. From 1999 to 2009, the NDVI value decreased by an average rate of 0.0025 per year. From 2010 to 2018, the values began an increasing trend and reached a peak in 2017, with an average annual rate of 0.0033. The high vegetation dynamics areas were mainly concentrated in the north and south slopes of the Tianshan Mountains, the Ili River Valley and the Altay area. The greyscale prediction results showed that the annual average NDVI values of natural vegetation may present a fluctuating increasing trend. The NDVI value in 2030 is 0.0196 higher than that in 2018, with an increase of 6.18%.

Conclusions

Our results indicate that: (i) the variations of climatic factors have caused a huge change in the hydrothermal conditions in Xinjiang; (ii) the vegetation dynamics in Xinjiang showed obvious volatility, and then in the end stage of the study were higher than the initial stage the vegetation dynamics in Xinjiang showed a staged increasing trend; (iii) the vegetation dynamics were affected by many factors,of which precipitation was the main reason; (iv) in the next decade, the vegetation dynamics in Xinjiang will show an increasing trend.

]]>
<![CDATA[Soil temperatures and active carbon components as key drivers of C stock dynamics between two different stand ages of Larix principis-rupprechtii plantation]]> https://www.researchpad.co/article/Nddab9581-5e4e-4a9f-a4eb-c2578afdd38c

Forest soils sequester a large amount of carbon (C) and have a significant effect on the global C balance. Forests are commonly managed to maintain certain age structures but the effects of this management on soil C pools (kg C m−2) is still uncertain. We compared 40-year-old (1GF) and 24-year-old (2GF) plantations of Larix principis-rupprechtii in North China. Specifically, we measured environmental factors (e.g., soil temperature, moisture, and pH), the active C and nitrogen (N) pools (e.g., soil organic C, soil total N, dissolved organic C and N, microbial biomass C and N), and soil processes (e.g., C mineralization and microbial activity in different seasons) in five soil layers (0–50 cm, 10 cm for each soil layer) across the growing seasons in three 25 m × 25 m plots in each age class (1GF and 2GF). Findings indicated that the soil organic C pool in the older 1GF forest (12.43 kg C m−2) was significantly higher than 2GF forests (9.56 kg C m−2), and that soil temperature in 1GF forests was 9.8 °C, on average, 2.9% warmer than temperature in 2GF forests. The C lost as carbon dioxide (CO2) as a result of mineralization in the 2GF plots may partly explain the lower soil organic C pool in these younger forests; microorganisms likely drive this process.

]]>
<![CDATA[Quantifying Stratospheric Temperature Signals and Climate Imprints From Post‐2000 Volcanic Eruptions]]> https://www.researchpad.co/article/Nc8f53688-9428-448b-9f34-38bdaf6f31f8

Abstract

Small volcanic eruptions and their effects have recently come into research focus. While large eruptions are known to strongly affect stratospheric temperature, the impacts of smaller eruptions are hard to quantify because their signals are masked by natural variability. Here, we quantify the temperature signals from small volcanic eruptions between 2002 and 2016 using new vertically resolved aerosol data and precise temperature observations from radio occultation. We find characteristic space‐time signals that can be associated with specific eruptions. In the lower stratosphere, robust warming signals are observed, while in the midstratosphere also cooling signals of some eruptions appear. We find that the volcanic contribution to the temperature trend is up to 20%, depending on latitude and altitude. We conclude that detailed knowledge of the vertical structure of volcanic temperature impacts is crucial for comprehensive trend analysis in order to separate natural from anthropogenic temperature changes.

]]>