ResearchPad - climatology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations]]> https://www.researchpad.co/article/elastic_article_7672 The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015–16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.

]]>
<![CDATA[Future trends of water resources and influences on agriculture in China]]> https://www.researchpad.co/article/N87c2566a-6970-4c5f-9ecf-ecac024e386a

Water resources are indispensable for all social-economic activities and ecosystem functions. In addition, changes in water resources have great significance for agricultural production. This paper uses five global climate models from CMIP5 to evaluate the future spatiotemporal variation in water resources in China under four RCP scenarios. The results show that the available precipitation significantly decreases due to evapotranspiration. Comparing the four RCP scenarios, the national average of the available precipitation is the highest under the RCP 2.6 and 4.5 scenarios, followed by that under the RCP 8.5 scenario. In terms of spatial distribution, the amount of available precipitation shows a decreasing trend from southeast to northwest. Regarding temporal changes, the available precipitation under RCP 8.5 exhibits a trend of first increasing and then decreasing, while the available precipitation under the RCP 6.0 scenario exhibits a trend of first decreasing and then increasing. Under the RCP 2.6 and 4.5 scenarios, the available precipitation increases, and the RCP 4.5 scenario has a higher rate of increase than that of RCP 2.6. In the context of climate change, changes in water resources and temperature cause widespread increases in potential agricultural productivity around Hu’s line, especially in southwestern China. However, the potential agricultural productivity decreases in a large area of southeastern China. Hu’s line has a partial breakthrough in the locking of agriculture, mainly in eastern Tibet, western Sichuan, northern Yunnan and northwestern Inner Mongolia. The results provide a reference for the management and deployment of future water resources and can aid in agricultural production in China.

]]>
<![CDATA[South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation]]> https://www.researchpad.co/article/N36c385f9-c733-4a45-add7-623601e32c59

The Interdecadal Pacific Oscillation offers hope for more reliable projections of near-term South Asian summer monsoon.

]]>
<![CDATA[Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America]]> https://www.researchpad.co/article/N1df86112-92c0-47c4-bc7e-b31b90b1d872

Abstract

Understanding the geographic distribution of mosquito‐borne disease and mapping disease risk are important for prevention and control efforts. Mosquito‐borne viruses (arboviruses), such as West Nile virus (WNV), are highly dependent on environmental conditions. Therefore, the use of environmental data can help in making spatial predictions of disease distribution. We used geocoded human case data for 2004–2017 and population‐weighted control points in combination with multiple geospatial environmental data sets to assess the environmental drivers of WNV cases and to map relative infection risk in South Dakota, USA. We compared the effectiveness of (1) land cover and physiography data, (2) climate data, and (3) spectral data for mapping the risk of WNV in South Dakota. A final model combining all data sets was used to predict spatial patterns of disease transmission and characterize the associations between environmental factors and WNV risk. We used a boosted regression tree model to identify the most important variables driving WNV risk and generated risk maps by applying this model across the entire state. We found that combining multiple sources of environmental data resulted in the most accurate predictions. Elevation, late‐season humidity, and early‐season surface moisture were the most important predictors of disease distribution. Indices that quantified interannual variability of climatic conditions and land surface moisture were better predictors than interannual means. We suggest that combining measures of interannual environmental variability with static land cover and physiography variables can help to improve spatial predictions of arbovirus transmission risk.

]]>
<![CDATA[Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satellite‐Based Observations in Detecting Outbreaks]]> https://www.researchpad.co/article/N1c514245-56ef-4185-b93e-7462d32dd374

Abstract

Rotavirus is the most common cause of diarrheal disease among children under 5. Especially in South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic extremes and safe water availability significantly influence diarrheal disease impacts in human populations, hydroclimatic information can be a potential tool for disease preparedness. In this study, we conducted a multivariate temporal and spatial assessment of 34 climate indices calculated from ground and satellite Earth observations to examine the role of temperature and rainfall extremes on the seasonality of rotavirus transmission in Bangladesh. We extracted rainfall data from the Global Precipitation Measurement and temperature data from the Moderate Resolution Imaging Spectroradiometer sensors to validate the analyses and explore the potential of a satellite‐based seasonal forecasting model. Our analyses found that the number of rainy days and nighttime temperature range from 16°C to 21°C are particularly influential on the winter transmission cycle of rotavirus. The lower number of wet days with suitable cold temperatures for an extended time accelerates the onset and intensity of the outbreaks. Temporal analysis over Dhaka also suggested that water logging during monsoon precipitation influences rotavirus outbreaks during a summer transmission cycle. The proposed model shows lag components, which allowed us to forecast the disease outbreaks 1 to 2 months in advance. The satellite data‐driven forecasts also effectively captured the increased vulnerability of dry‐cold regions of the country, compared to the wet‐warm regions.

]]>
<![CDATA[The role of Northeast Pacific meltwater events in deglacial climate change]]> https://www.researchpad.co/article/N17cbe9e8-c9d9-416e-af39-41de16ec4760

Deglacial meltwater input to the North Pacific contributed to abrupt Northern Hemisphere climate events.

]]>
<![CDATA[Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event]]> https://www.researchpad.co/article/N03398dfe-4375-4a06-a7dd-a3641982ccf1

Two-phased flooding of Bering Strait is reconciled by melting North American ice saddle during Younger Dryas.

]]>
<![CDATA[Identifying Source Regions and the Distribution of Cross‐Tropopause Convective Outflow Over North America During the Warm Season]]> https://www.researchpad.co/article/Nba38a661-9ecf-4b13-ba55-b636e4f23237

Abstract

We analyzed the interaction between the North American monsoon anticyclone (NAMA) and summertime cross‐tropopause convective outflow by applying a trajectory analysis to a climatology of convective overshooting tops (OTs) identified in GOES satellite images, which covers the domain from 29°S to 68°N and from 205 to 1.25°W for the time period of May through September 2013. With this analysis we identified seasonally, geographically, and altitude‐dependent variability in NAMA strength and in cross‐tropopause convection that control their interaction. We find that the NAMA has the strongest impact on the circulation of convectively influenced air masses in August. Over the entire time period examined the intertropical convergence zone contributes the majority of OTs with a larger fraction of total OTs at 370 K (on average 70%) than at 400 K (on average 52%). During August at 370 K, the convectively influenced air masses within the NAMA circulation, as determined by the trajectory analysis, are primarily sourced from the intertropical convergence zone (monthly average of 66.1%), while at 400 K the Sierra Madres and the Central United States combined constitute the dominant source region (monthly average of 44.1%, compared to 36.6% of the combined Intertropical Convergence Zone regions). When evaluating the impact of cross‐tropopause convection on the composition and chemistry of the upper troposphere and lower stratosphere, the effects of the NAMA on both the distribution of convective outflow and the residence time of convectively influenced air masses within the NAMA region must be considered.

]]>
<![CDATA[Insignificant QBO‐MJO Prediction Skill Relationship in the SubX and S2S Subseasonal Reforecasts]]> https://www.researchpad.co/article/N80d62339-fdd5-4539-8af8-fbb9aaf795dd

Abstract

The impact of the stratospheric quasi‐biennial oscillation (QBO) on the prediction of the tropospheric Madden‐Julian oscillation (MJO) is evaluated in reforecasts from nine models participating in subseasonal prediction projects, including the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) projects. When MJO prediction skill is analyzed for December to February, MJO prediction skill is higher in the easterly phase of the QBO than the westerly phase, consistent with previous studies. However, the relationship between QBO phase and MJO prediction skill is not statistically significant for most models. This insignificant QBO‐MJO skill relationship is further confirmed by comparing two subseasonal reforecast experiments with the Community Earth System Model v1 using both a high‐top (46‐level) and low‐top (30‐level) version of the Community Atmosphere Model v5. While there are clear differences in the forecasted QBO between the two model top configurations, a negligible change is shown in the MJO prediction, indicating that the QBO in this model may not directly control the MJO prediction and supporting the insignificant QBO‐MJO skill relationship found in SubX and S2S models.

]]>
<![CDATA[Efficacy of Climate Forcings in PDRMIP Models]]> https://www.researchpad.co/article/N277a3652-7bfa-4ad6-af18-e20af9ecbbd6

Abstract

Quantifying the efficacy of different climate forcings is important for understanding the real‐world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near‐surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy‐induced bias of ±0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend.

]]>
<![CDATA[Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries]]> https://www.researchpad.co/article/N1dd11cc4-1cd6-404e-8c74-4b242dc87ec9

Abstract

This study investigates the atmospheric drivers of severe precipitation deficits in the Greater Alpine Region during the last 210 years utilizing a daily atmospheric circulation type reconstruction. Precipitation deficit tends to be higher during periods with more frequent anticyclonic (dry) and less frequent cyclonic (wet) circulation types, as would be expected. However, circulation characteristics are not the main drivers of summer precipitation deficit. Dry soils in the warm season tend to limit precipitation, which is particularly the case for circulation types that are sensitive to a soil moisture‐precipitation feedback. This mechanism is of specific relevance in explaining the major drought decades of the 1860s and 1940s. Both episodes show large negative precipitation anomalies in spring followed by increasing frequencies of circulation types sensitive to soil moisture precipitation feedbacks. The dry springs of the 1860s were likely caused by circulation characteristics that were quite different from those of recent decades as a consequence of the large spatial extent of Arctic sea ice at the end of the Little Ice Age. On the other hand, the dry springs of the 1940s developed under a persistent positive pressure anomaly across Western and Central Europe, triggered by positive sea surface temperatures in the western subtropical Atlantic.

]]>
<![CDATA[Quantifying the Timescale and Strength of Southern Hemisphere Intraseasonal Stratosphere‐troposphere Coupling]]> https://www.researchpad.co/article/Ne2d0b07a-2452-4f6d-ba26-c3d3b5569795

Abstract

The Southern Hemisphere zonal circulation manifests a downward influence of the stratosphere on the troposphere from late spring to early summer. However, the strength and timescale of the connection, given the stratospheric state, have not been explicitly quantified. Here, SH zonal wind reanalysis time series are analyzed with a methodology designed to detect the minimal set of statistical predictors of multiple interacting variables via conditional independence tests. Our results confirm from data that the variability of the stratospheric polar vortex is a predictor of the tropospheric eddy‐driven jet between September and January. The vortex variability explains about 40% of monthly mean jet variability at a lead time of 1 month and can entirely account for the observed jet persistence. Our statistical model can quantitatively connect the multidecadal trends observed in the vortex and jet during the satellite era. This shows how short‐term variability can help understand statistical links in long‐term changes.

]]>
<![CDATA[Quantifying Stratospheric Temperature Signals and Climate Imprints From Post‐2000 Volcanic Eruptions]]> https://www.researchpad.co/article/Nc8f53688-9428-448b-9f34-38bdaf6f31f8

Abstract

Small volcanic eruptions and their effects have recently come into research focus. While large eruptions are known to strongly affect stratospheric temperature, the impacts of smaller eruptions are hard to quantify because their signals are masked by natural variability. Here, we quantify the temperature signals from small volcanic eruptions between 2002 and 2016 using new vertically resolved aerosol data and precise temperature observations from radio occultation. We find characteristic space‐time signals that can be associated with specific eruptions. In the lower stratosphere, robust warming signals are observed, while in the midstratosphere also cooling signals of some eruptions appear. We find that the volcanic contribution to the temperature trend is up to 20%, depending on latitude and altitude. We conclude that detailed knowledge of the vertical structure of volcanic temperature impacts is crucial for comprehensive trend analysis in order to separate natural from anthropogenic temperature changes.

]]>
<![CDATA[Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants]]> https://www.researchpad.co/article/N61e2eed0-2c64-4546-9ac0-45f65dffcfbc

A rapid rise in CO2 has made evergreen trees more waterwise than deciduous trees, especially in cooler parts of the world.

]]>
<![CDATA[Mid-Holocene Northern Hemisphere warming driven by Arctic amplification]]> https://www.researchpad.co/article/N09bb001f-98a2-4780-9331-3966fb7836b8

Analyses of a mid-Holocene climate model ensemble and paleo-proxies reveal that the mid-Holocene Northern Hemisphere was warm.

]]>
<![CDATA[Role of climate in the rise and fall of the Neo-Assyrian Empire]]> https://www.researchpad.co/article/N3ca9b198-897b-45ae-acb6-f75829a67feb

Climate change played an important causal role in the expansion and collapse of the Neo-Assyrian Empire.

]]>
<![CDATA[Modern botanical analogue of endangered Yak (Bos mutus) dung from India: Plausible linkage with extant and extinct megaherbivores]]> https://www.researchpad.co/article/5c897796d5eed0c4847d30d6

The study reports the micro- and macrobotanical remains on wild Yak dung, providing evidence for understanding the diet, habitat, and ecology of extant and extinct megaherbivores. Grasses are the primary diet of the yak as indicated by the abundance of grass pollen and phytoliths. Other associated non-arboreal and arboreal taxa namely, Cyperacaeae, Rosaceae, Chenopodiaceae, Artemisia, Prunus, and Rhododendron are also important dietary plants for their living. The observation of plant macrobotanical remains especially the vegetative part and seeds of the grasses and Cyperaceae is also in agreement with the palynodata. The documented micro- and macrobotanical data are indicative of both Alpine meadow and steppe vegetation under cold and dry climate which exactly reflected the current vegetation composition and climate in the region. The recovery of Botryococcus, Arcella, and diatom was observed in trace amounts in the palynoassemblage which would have been incorporated in the dung through the ingestion of water and are indicative of the presence of perennial water system in the region. Energy dispersive spectroscopy analysis marked that the element contained in dung samples has variation in relation to the summer and winter, which might be due to the availability of the food plants and vegetation. This generated multiproxy data serves as a strong supplementary data for modern pollen and vegetation relationships based on surface soil samples in the region. The recorded multiproxy data could also be useful to interpret the relationship between the coprolites of herbivorous fauna and the palaeodietary, the palaeoecology in the region, and to correlate with other mega herbivores in a global context.

]]>
<![CDATA[Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission]]> https://www.researchpad.co/article/5c897788d5eed0c4847d2f3b

Since past century, vector-borne diseases have been a major public health concern in several states of Mexico. However, Mexico City continues to be free of endemic mosquito-borne viral diseases. The city is the most important politic and economic state of Mexico and one of the most important city of Latin America. Its subtropical highland climate and high elevation (2240 masl) had historically made the occurrence of Aedes species unlikely. However, the presence of other potential disease vectors (Culex spp, Culiseta spp), and the current intermittent introductions of Aedes aegypti, have revealed that control programs must adopt routine vector surveillance in the city. In this study, we provide an updated species list from a five-years of vector surveillance performed in Mexico City. A total of 18,553 mosquito larvae were collected. Twenty-two species from genus Culex, Aedes, Culiseta, Anopheles, Lutzia and Uranotaenia were observed. Nine new mosquito records for the city were found. Ae. albopictus was recorded for the first time in Mexico City. Interestingly, a new record, Ae. epactius was the most frequent species reported. Cx. pipiens quinquefasciatus exhibited the highest number of individuals collected. We detected six areas which harbor the highest mosquito species records in the city. Cemeteries included 68.9% of our collection sites. Temporarily ponds showed the highest species diversity. We detected an increasing presence of Ae. aegypti, which was detected for three consecutive years (2015–2017), predominantly in the warmer microclimates of the city. We found a possible correlation between increasing temperature and Ae. aegypti and Ae. albopictus expanding range. This study provides a starting point for developing strategies related to environmental management for mosquito control. The promotion of mosquito control practices through community participation, mass media and education programmes in schools should be introduced in the city.

]]>
<![CDATA[Systematically false positives in early warning signal analysis]]> https://www.researchpad.co/article/5c648ce2d5eed0c484c819e6

Many systems in various scientific fields like medicine, ecology, economics or climate science exhibit so-called critical transitions, through which a system abruptly changes from one state to a different state. Typical examples are epileptic seizures, changes in the climate system or catastrophic shifts in ecosystems. In order to predict imminent critical transitions, a mathematical apparatus called early warning signals has been developed and this method is used successfully in many scientific areas. However, not all critical transitions can be detected by this approach (false negative) and the appearance of early warning signals does not necessarily proof that a critical transition is imminent (false positive). Furthermore, there are whole classes of systems that always show early warning signals, even though they do not feature critical transitions. In this study we identify such classes in order to provide a safeguard against a misinterpretation of the results of an early warning signal analysis of such systems. Furthermore, we discuss strategies to avoid such systematic false positives and test our theoretical insights by applying them to real world data.

]]>
<![CDATA[Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya]]> https://www.researchpad.co/article/5c648cdfd5eed0c484c819a9

Background

The transmission of malaria is highly variable and depends on a range of climatic and anthropogenic factors. This study investigates the combined, i.e. direct and indirect, impacts of climate change on the dynamics of malaria through modifications in: (i) the sporogonic cycle of Plasmodium induced by air temperature increase, and (ii) the life cycle of Anopheles vector triggered by changes in natural breeding habitat arising from the altered moisture dynamics resulting from acclimation responses of vegetation under climate change. The study is performed for a rural region in Kilifi county, Kenya.

Methods and findings

We use a stochastic lattice-based malaria (SLIM) model to make predictions of changes in Anopheles vector abundance, the life cycle of Plasmodium parasites, and thus malaria transmission under projected climate change in the study region. SLIM incorporates a nonlinear temperature-dependence of malaria parasite development to estimate the extrinsic incubation period of Plasmodium. It is also linked with a spatially distributed eco-hydrologic modeling framework to capture the impacts of climate change on soil moisture dynamics, which served as a key determinant for the formation and persistence of mosquito larval habitats on the land surface. Malaria incidence data collected from 2008 to 2013 is used for SLIM model validation. Projections of climate change and human population for the region are used to run the models for prediction scenarios.

Under elevated atmospheric CO2 concentration ([CO2]) only, modeled results reveal wetter soil moisture in the root zone due to the suppression of transpiration from vegetation acclimation, which increases the abundance of Anopheles vectors and the risk of malaria. When air temperature increases are also considered along with elevated [CO2], the life cycle of Anopheles vector and the extrinsic incubation period of Plasmodium parasites are shortened nonlinearly. However, the reduction of soil moisture resulting from higher evapotranspiration due to air temperature increase also reduces the larval habitats of the vector. Our findings show the complicated role of vegetation acclimation under elevated [CO2] on malaria dynamics and indicate an indirect but ignored impact of air temperature increase on malaria transmission through reduction in larval habitats and vector density.

Conclusions

Vegetation acclimation triggered by elevated [CO2] under climate change increases the risk of malaria. In addition, air temperature increase under climate change has opposing effects on mosquito larval habitats and the life cycles of both Anopheles vectors and Plasmodium parasites. The indirect impacts of temperature change on soil moisture dynamics are significant and should be weighed together with the direct effects of temperature change on the life cycles of mosquitoes and parasites for future malaria prediction and control.

]]>