ResearchPad - coevolution https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Interaction between host genes and <i>Mycobacterium tuberculosis</i> lineage can affect tuberculosis severity: Evidence for coevolution?]]> https://www.researchpad.co/article/elastic_article_13824 Susceptibility to tuberculosis (TB) is affected by genetic variation in both the human host and the causative bacterium, Mycobacterium tuberculosis. However, prior studies of the genetics of each species have not explained a large part of TB risk. The possibility exists that risk can be better estimated from patterns of variation in the two species as a unit, such that some combinations provide increased risk, or in the presence of TB, increased disease severity. We hypothesized that alleles in the two species that have co-existed for long periods are more likely to reduce disease severity so as to promote prolonged co-occurrence. We tested this by studying TB severity in two patient cohorts from Uganda for which paired MTB-human DNA were available. We examined severity, as measured by the Bandim TBscore, and assessed whether there was an interaction between MTB lineage and SNPs in the host with this metric. Our results indicate that the most recent TB lineage (L4.6/Uganda) when found together with an ancestral allele in SLC11A1 resulted in more severe disease. This finding is consistent with the conclusion that MTB and human have coevolved to modulate TB severity.

]]>
<![CDATA[Holobiont&#8211;Holobiont Interactions: Redefining Host&#8211;Parasite Interactions]]> https://www.researchpad.co/article/5989daf8ab0ee8fa60bc3cd6 ]]> <![CDATA[Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host]]> https://www.researchpad.co/article/5989da31ab0ee8fa60b849fc

For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence.

]]>
<![CDATA[Susceptibility of Anopheles stephensi to Plasmodium gallinaceum: A Trait of the Mosquito, the Parasite, and the Environment]]> https://www.researchpad.co/article/5989da04ab0ee8fa60b7518f

Background

Vector susceptibility to Plasmodium infection is treated primarily as a vector trait, although it is a composite trait expressing the joint occurrence of the parasite and the vector with genetic contributions of both. A comprehensive approach to assess the specific contribution of genetic and environmental variation on “vector susceptibility” is lacking. Here we developed and implemented a simple scheme to assess the specific contributions of the vector, the parasite, and the environment to “vector susceptibility.” To the best of our knowledge this is the first study that employs such an approach.

Methodology/Principal Findings

We conducted selection experiments on the vector (while holding the parasite “constant”) and on the parasite (while holding the vector “constant”) to estimate the genetic contributions of the mosquito and the parasite to the susceptibility of Anopheles stephensi to Plasmodium gallinaceum. We separately estimated the realized heritability of (i) susceptibility to parasite infection by the mosquito vector and (ii) parasite compatibility (transmissibility) with the vector while controlling the other. The heritabilities of vector and the parasite were higher for the prevalence, i.e., fraction of infected mosquitoes, than the corresponding heritabilities of parasite load, i.e., the number of oocysts per mosquito.

Conclusions

The vector's genetics (heritability) comprised 67% of “vector susceptibility” measured by the prevalence of mosquitoes infected with P. gallinaceum oocysts, whereas the specific contribution of parasite genetics (heritability) to this trait was only 5%. Our parasite source might possess minimal genetic diversity, which could explain its low heritability (and the high value of the vector). Notably, the environment contributed 28%. These estimates are relevant only to the particular system under study, but this experimental design could be useful for other parasite-host systems. The prospects and limitations of the genetic manipulation of vector populations to render the vector resistant to the parasite are better considered on the basis of this framework.

]]>
<![CDATA[The Biological Origin of Linguistic Diversity]]> https://www.researchpad.co/article/5989d9f9ab0ee8fa60b71262

In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language.

]]>
<![CDATA[The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle]]> https://www.researchpad.co/article/5989dadeab0ee8fa60bbaf02

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.

]]>
<![CDATA[Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia coli]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b65171

According to the Red Queen hypothesis or arms race dynamics, coevolution drives continuous adaptation and counter-adaptation. Experimental models under simplified environments consisting of bacteria and bacteriophages have been used to analyze the ongoing process of coevolution, but the analysis of both parasites and their hosts in ongoing adaptation and counter-adaptation remained to be performed at the levels of population dynamics and molecular evolution to understand how the phenotypes and genotypes of coevolving parasite–host pairs change through the arms race. Copropagation experiments with Escherichia coli and the lytic RNA bacteriophage Qβ in a spatially unstructured environment revealed coexistence for 54 days (equivalent to 163–165 replication generations of Qβ) and fitness analysis indicated that they were in an arms race. E. coli first adapted by developing partial resistance to infection and later increasing specific growth rate. The phage counter-adapted by improving release efficiency with a change in host specificity and decrease in virulence. Whole-genome analysis indicated that the phage accumulated 7.5 mutations, mainly in the A2 gene, 3.4-fold faster than in Qβ propagated alone. E. coli showed fixation of two mutations (in traQ and csdA) faster than in sole E. coli experimental evolution. These observations suggest that the virus and its host can coexist in an evolutionary arms race, despite a difference in genome mutability (i.e., mutations per genome per replication) of approximately one to three orders of magnitude.

]]>
<![CDATA[Sex Allocation in Relation to Host Races in the Brood-Parasitic Common Cuckoo (Cuculus canorus)]]> https://www.researchpad.co/article/5989db0bab0ee8fa60bca3c6

Sex allocation theory and empirical evidence both suggest that natural selection should favour maternal control of offspring sex ratio in relation to their ability to invest in the offspring. Generalist parasites constitute a particularly interesting group to test this theory as different females commonly utilize different host species showing large variation in provisioning ability. The common cuckoo (Cuculus canorus) is a generalist brood parasite that lays its eggs in the nest of many different passerine birds, but each female tends to specialize on one particular host species giving rise to highly specialized host races. The different host species show large variation in their ability to invest in the parasitic offspring, presenting an opportunity for female cuckoos to bias offspring sex ratio in relation to host species quality. Here, we investigate host-race specific sex allocation controlling for maternal identity in the common cuckoo. We found no evidence of any significant relationship between host race and sex ratio in one sympatric population harbouring three different host races, or in a total of five geographically separated populations. There was also no significant association between host quality, as determined by species-specific female host body mass, and cuckoo sex ratio. Finally, we found no significant relationship between individual cuckoo maternal quality, as determined by her egg volume, and sex ratio within each host race. We conclude that the generalist brood-parasitic common cuckoo show no significant sex-ratio bias in relation to host race and discuss this finding in light of gene flow and host adaptations.

]]>
<![CDATA[Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections]]> https://www.researchpad.co/article/5989daf1ab0ee8fa60bc13da

The vertebrate adaptive immune system provides a flexible and diverse set of molecules to neutralize pathogens. Yet, viruses such as HIV can cause chronic infections by evolving as quickly as the adaptive immune system, forming an evolutionary arms race. Here we introduce a mathematical framework to study the coevolutionary dynamics between antibodies and antigens within a host. We focus on changes in the binding interactions between the antibody and antigen populations, which result from the underlying stochastic evolution of genotype frequencies driven by mutation, selection, and drift. We identify the critical viral and immune parameters that determine the distribution of antibody-antigen binding affinities. We also identify definitive signatures of coevolution that measure the reciprocal response between antibodies and viruses, and we introduce experimentally measurable quantities that quantify the extent of adaptation during continual coevolution of the two opposing populations. Using this analytical framework, we infer rates of viral and immune adaptation based on time-shifted neutralization assays in two HIV-infected patients. Finally, we analyze competition between clonal lineages of antibodies and characterize the fate of a given lineage in terms of the state of the antibody and viral populations. In particular, we derive the conditions that favor the emergence of broadly neutralizing antibodies, which may have relevance to vaccine design against HIV.

]]>
<![CDATA[Unusual Symbiotic Cyanobacteria Association in the Genetically Diverse Intertidal Marine Sponge Hymeniacidon perlevis (Demospongiae, Halichondrida)]]> https://www.researchpad.co/article/5989dacbab0ee8fa60bb4417

Cyanobacteria represent one of the most common members of the sponge-associated bacterial community and are abundant symbionts of coral reef ecosystems. In this study we used Transmission Electron Microscopy (TEM) and molecular techniques (16S rRNA gene marker) to characterize the spatial distribution of cyanobionts in the widely dispersed marine intertidal sponge Hymeniacidon perlevis along the coast of Portugal (Atlantic Ocean). We described new sponge associated cyanobacterial morphotypes (Xenococcus-like) and we further observed Acaryochloris sp. as a sponge symbiont, previously only reported in association with ascidians. Besides these two unique cyanobacteria, H. perlevis predominantly harbored Synechococcus sp. and uncultured marine cyanobacteria. Our study supports the hypothesis that the community of sponge cyanobionts varies irrespective of the geographical location and is likely influenced by seasonal fluctuations. The observed multiple cyanobacterial association among sponges of the same host species over a large distance may be attributed to horizontal transfer of symbionts. This may explain the absence of a co-evolutionary pattern between the sponge host and its symbionts. Finally, in spite of the short geographic sampling distance covered, we observed an unexpected high intra-specific genetic diversity in H. perlevis using the mitochondrial genes ATP6 (π = 0.00177), COI (π = 0.00241) and intergenic spacer SP1 (π = 0.00277) relative to the levels of genetic variation of marine sponges elsewhere. Our study suggests that genotypic variation among the sponge host H. perlevis and the associated symbiotic cyanobacteria diversity may be larger than previously recognized.

]]>
<![CDATA[Competition for Trophies Triggers Male Generosity]]> https://www.researchpad.co/article/5989db09ab0ee8fa60bc950b

Background

Cooperation is indispensable in human societies, and much progress has been made towards understanding human pro-social decisions. Formal incentives, such as punishment, are suggested as potential effective approaches despite the fact that punishment can crowd out intrinsic motives for cooperation and detrimentally impact efficiency. At the same time, evolutionary biologists have long recognized that cooperation, especially food sharing, is typically efficiently organized in groups living on wild foods, even absent formal economic incentives. Despite its evident importance, the source of this voluntary compliance remains largely uninformed. Drawing on costly signaling theory, and in light of the widely established competitive nature of males, we hypothesize that unique and displayable rewards (trophies) out of competition may trigger male generosity in competitive social environments.

Principal Findings

Here, we use a controlled laboratory experiment to show that cooperation is sustained in a generosity competition with trophy rewards, but breaks down in the same environment with equally valuable but non-unique and non-displayable rewards. Further, we find that males' competition for trophies is the driving force behind treatment differences. In contrast, it appears that female competitiveness is not modulated by trophy rewards.

Significance

Our results suggest new approaches to promoting cooperation in human groups that, unlike punishment mechanisms, do not sacrifice efficiency. This could have important implications in any domain where voluntary compliance matters — including relations between spouses, employers and employees, market transactions, and conformity to legal standards.

]]>
<![CDATA[Partial Complementarity of the Mimetic Yellow Bar Phenotype in Heliconius Butterflies]]> https://www.researchpad.co/article/5989da96ab0ee8fa60ba201f

Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis) do not show genetic complementation (F1s and F2s are phenotypically identical to parentals). Finally, we report hybrid female inviability in H. m. melpomene × H. m. rosina crosses (previously only female infertility had been reported) and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background) that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci.

]]>
<![CDATA[Maintenance of Sperm Variation in a Highly Promiscuous Wild Bird]]> https://www.researchpad.co/article/5989da6fab0ee8fa60b9439b

Postcopulatory sexual selection is an important force in the evolution of reproductive traits, including sperm morphology. In birds, sperm morphology is known to be highly heritable and largely condition-independent. Theory predicts, and recent comparative work corroborates, that strong selection in such traits reduces intraspecific phenotypic variation. Here we show that some variation can be maintained despite extreme promiscuity, as a result of opposing, copulation-role-specific selection forces. After controlling for known correlates of siring success in the superb fairy-wren (Malurus cyaneus), we found that (a) lifetime extra-pair paternity success was associated with sperm with a shorter flagellum and relatively large head, and (b) males whose sperm had a longer flagellum and a relatively smaller head achieved higher within-pair paternity. In this species extrapair copulations occur in the same morning, but preceding, pair copulations during a female's fertile period, suggesting that shorter and relatively larger-headed sperm are most successful in securing storage (defense), whereas the opposite phenotype might be better at outcompeting stored sperm (offense). Furthermore, since cuckolding ability is a major contributor to differential male reproductive output, stronger selection on defense sperm competition traits might explain the short sperm of malurids relative to other promiscuous passerines.

]]>
<![CDATA[Müllerian Mimicry as a Result of Codivergence between Velvet Ants and Spider Wasps]]> https://www.researchpad.co/article/5989db1aab0ee8fa60bcdedb

Recent studies have delineated a large Nearctic Müllerian mimicry complex in Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry complex is found and are phenotypically similar to Dasymutilla. We tested the idea that Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that they codiverged with Dasymutilla. We performed morphometric analyses and human perception tests, and tabulated distributional records to determine the fit of Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using nuclear molecular markers (28S, elongation factor 1-alpha, long-wavelength rhodopsin and wingless) for Psorthaspis species and compared it to a dated phylogeny of Dasymutilla. We tested for codivergence between the two groups using two statistical analyses. Our results show that Psorthaspis spider wasps are morphologically similar to the Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and Dasymutilla codiverged to produce similar color patterns. This study expands the breadth of the Dasymutilla Müllerian mimicry complex and provides insights about how codivergence influenced the evolution of mimicry in these groups.

]]>
<![CDATA[Spatial Geographic Mosaic in an Aquatic Predator-Prey Network]]> https://www.researchpad.co/article/5989db4eab0ee8fa60bdb331

The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance.

]]>
<![CDATA[Daily Rhythm of Mutualistic Pollinator Activity and Scent Emission in Ficus septica: Ecological Differentiation between Co-Occurring Pollinators and Potential Consequences for Chemical Communication and Facilitation of Host Speciation]]> https://www.researchpad.co/article/5989da37ab0ee8fa60b86b5d

The mutualistic interaction between Ficus and their pollinating agaonid wasps constitutes an extreme example of plant-insect co-diversification. Most Ficus species are locally associated with a single specific agaonid wasp species. Specificity is ensured by each fig species emitting a distinctive attractive scent. However, cases of widespread coexistence of two agaonid wasp species on the same Ficus species are documented. Here we document the coexistence of two agaonid wasp species in Ficus septica: one yellow-colored and one black-colored. Our results suggest that their coexistence is facilitated by divergent ecological traits. The black species is longer-lived (a few more hours) and is hence active until later in the afternoon. Some traits of the yellow species must compensate for this advantage for their coexistence to be stable. In addition, we show that the composition of the scent emitted by receptive figs changes between sunrise and noon. The two species may therefore be exposed to somewhat different ranges of receptive fig scent composition and may consequently diverge in the way they perceive and/or respond to scents. Whether such situations may lead to host plant speciation is an open question.

]]>
<![CDATA[The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex]]> https://www.researchpad.co/article/5989da4dab0ee8fa60b8d11f

Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches.

]]>
<![CDATA[A Brazilian Population of the Asexual Fungus-Growing Ant Mycocepurus smithii (Formicidae, Myrmicinae, Attini) Cultivates Fungal Symbionts with Gongylidia-Like Structures]]> https://www.researchpad.co/article/5989db2dab0ee8fa60bd1b01

Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.

]]>
<![CDATA[Fishing for adaptive epistasis using mitonuclear interactions]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd11b ]]> <![CDATA[Identification of Wolbachia Strains in Mosquito Disease Vectors]]> https://www.researchpad.co/article/5989db23ab0ee8fa60bcfc7b

Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs.

]]>