ResearchPad - color-vision https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Image-quality metric system for color filter array evaluation]]> https://www.researchpad.co/article/elastic_article_7704 A modern color filter array (CFA) output is rendered into the final output image using a demosaicing algorithm. During this process, the rendered image is affected by optical and carrier cross talk of the CFA pattern and demosaicing algorithm. Although many CFA patterns have been proposed thus far, an image-quality (IQ) evaluation system capable of comprehensively evaluating the IQ of each CFA pattern has yet to be developed, although IQ evaluation items using local characteristics or specific domain have been created. Hence, we present an IQ metric system to evaluate the IQ performance of CFA patterns. The proposed CFA evaluation system includes proposed metrics such as the moiré robustness using the experimentally determined moiré starting point (MSP) and achromatic reproduction (AR) error, as well as existing metrics such as color accuracy using CIELAB, a color reproduction error using spatial CIELAB, structural information using the structure similarity, the image contrast based on MTF50, structural and color distortion using the mean deviation similarity index (MDSI), and perceptual similarity using Haar wavelet-based perceptual similarity index (HaarPSI). Through our experiment, we confirmed that the proposed CFA evaluation system can assess the IQ for an existing CFA. Moreover, the proposed system can be used to design or evaluate new CFAs by automatically checking the individual performance for the metrics used.

]]>
<![CDATA[Spatial visual function in anomalous trichromats: Is less more?]]> https://www.researchpad.co/article/5c5217ddd5eed0c48479472c

Color deficiency is a common inherited disorder affecting 8% of Caucasian males with anomalous trichromacy (AT); it is the most common type of inherited color vision deficiency. Anomalous trichromacy is caused by alteration of one of the three cone-opsins’ spectral sensitivity; it is usually considered to impose marked limitations for daily life as well as for choice of occupation. Nevertheless, we show here that anomalous trichromat subjects have superior basic visual functions such as visual acuity (VA), contrast sensitivity (CS), and stereo acuity, compared with participants with normal color vision. Both contrast sensitivity and stereo acuity performance were correlated with the severity of color deficiency. We further show that subjects with anomalous trichromacy exhibit a better ability to detect objects camouflaged in natural gray scale figures. The advantages of color-deficient subjects in spatial vision performance could explain the relatively high prevalence of color-vision polymorphism in humans.

]]>
<![CDATA[A functional MRI investigation of crossmodal interference in an audiovisual Stroop task]]> https://www.researchpad.co/article/5c478c85d5eed0c484bd2d7f

The visual color-word Stroop task is widely used in clinical and research settings as a measure of cognitive control. Numerous neuroimaging studies have used color-word Stroop tasks to investigate the neural resources supporting cognitive control, but to our knowledge all have used unimodal (typically visual) Stroop paradigms. Thus, it is possible that this classic measure of cognitive control is not capturing the resources involved in multisensory cognitive control. The audiovisual integration and crossmodal correspondence literatures identify regions sensitive to congruency of auditory and visual stimuli, but it is unclear how these regions relate to the unimodal cognitive control literature. In this study we aimed to identify brain regions engaged by crossmodal cognitive control during an audiovisual color-word Stroop task, and how they relate to previous unimodal Stroop and audiovisual integration findings. First, we replicated previous behavioral audiovisual Stroop findings in an fMRI-adapted audiovisual Stroop paradigm: incongruent visual information increased reaction time towards an auditory stimulus and congruent visual information decreased reaction time. Second, we investigated the brain regions supporting cognitive control during an audiovisual color-word Stroop task using fMRI. Similar to unimodal cognitive control tasks, a left superior parietal region exhibited an interference effect of visual information on the auditory stimulus. This superior parietal region was also identified using a standard audiovisual integration localizing procedure, indicating that audiovisual integration resources are sensitive to cognitive control demands. Facilitation of the auditory stimulus by congruent visual information was found in posterior superior temporal cortex, including in the posterior STS which has been found to support audiovisual integration. The dorsal anterior cingulate cortex, often implicated in unimodal Stroop tasks, was not modulated by the audiovisual Stroop task. Overall the findings indicate that an audiovisual color-word Stroop task engages overlapping resources with audiovisual integration and overlapping but distinct resources compared to unimodal Stroop tasks.

]]>
<![CDATA[Sex related biases for attending to object color versus object position are reflected in reaction time and accuracy]]> https://www.researchpad.co/article/5c3fa579d5eed0c484ca4cb1

Processing of visual features related to objects and space relations occurs within separate cortical streams that interact with selective attention. Such separation has implications for cognitive development because the perception of ‘what’ and ‘where’ provide a neural foundation for the development of aspects of higher cognition. Thus, a small attentional bias in early development for attending to one aspect over the other might influence subsequent higher cognitive processing in tasks involving object recognition and space relations. We examined 134 men and women for evidence of an inherent sex-related bias for attending to basic perceptual features related to object discrimination versus object position. Each stimulus consisted of a circle located in one of 9 positions within a surrounding frame. Circles were one of three shades of blue or red. These stimuli were used in a match-to-sample paradigm where participants were required to match circles on the basis of color or spatial position. The first stimulus appeared in the center of the screen for 400 msec and the matching stimulus subsequently appeared for 400 msec oriented 5 degrees to the right or left of center. The same stimuli were used to test the perception of color and position, with order of testing counterbalanced across participants. Results showed significantly longer reaction times in females compared with males, with better accuracy to discriminate color when that color was tested before position. Males showed better accuracy when object position was tested before color discrimination. A second experiment employed the same procedure, but enhanced selective attention by adding an endogenous cue that predicted the right or left location for the appearance of the matching stimulus. This manipulation greatly attenuated the sex differences in reaction time and accuracy compared to Experiment 1, suggesting that the sex-related attentional biases are strongly coupled to bottom-up processing. Overall, the sex related attentional biases toward processing object characteristics versus object position location suggest a differential manifestation of biased competition between the weighted systems of dorsal and ventral stream processing. Results are discussed with how a developmental bias in the processing objects versus space relations may contribute to adult cognitive sex differences in humans and animals.

]]>
<![CDATA[The subjective metric of remembered colors: A Fisher-information analysis of the geometry of human chromatic memory]]> https://www.researchpad.co/article/5c3667c6d5eed0c4841a63c1

In order to explore the metric structure of the space of remembered colors, a computer game was designed, where players with normal color vision had to store a color in memory, and later retrieve it by selecting the best match out of a continuum of alternatives. All tested subjects exhibited evidence of focal colors in their mnemonic strategy. We found no concluding evidence that the focal colors of different players tended to cluster around universal prototypes. Based on the Fisher metric, for each subject we defined a notion of distance in color space that captured the accuracy with which similar colors where discriminated or confounded when stored and retrieved from memory. The notions of distance obtained for different players were remarkably similar. Finally, for each player, we constructed a new color scale, in which colors are memorized and retrieved with uniform accuracy.

]]>
<![CDATA[Basic color categories and Mandarin Chinese color terms]]> https://www.researchpad.co/article/5c0841bfd5eed0c484fcaa2e

Basic color terms used in Mandarin Chinese have been controversial since first discussed by Berlin and Kay in 1969. Previous studies showed much inconsistency on what should be considered as basic color terms in Mandarin Chinese. In the present study, we investigated categories of color rather than merely the color terms used by Taiwanese native Mandarin speakers. Using samples conforming to the Berlin and Kay survey, various colors were chosen from a collection of Natural Color System (NCS) colored papers and mounted on a piece of neutral gray card. The card was then mounted on a touch-screen, under D65 illumination. Thirty-two single-character color related Mandarin terms were selected from a Chinese character database according to frequency of use. Participants were required to select the color sample that matched the term by pressing a virtual button on the touch screen. The results show that certain terms can be directly correlated to basic color terms in English, comparable with the results of Berlin and Kay’s original study and those that followed. However, some terms, such as Mo (墨 ink), Tie (鐵 iron), and Cai (菜vegetable), show a wide spread of term maps and inconsistent use among subjects. Principle component analysis (PCA) procedures were used to analysis the commodity of data among subjects. The findings suggest that the basic color categories among Mandarin Chinese speakers are similar to those found in the World Color Survey (WCS), but are represented by wide-spread and inconsistent color terms among speakers.

]]>
<![CDATA[Individual Colorimetric Observer Model]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b8672e

This study proposes a vision model for individual colorimetric observers. The proposed model can be beneficial in many color-critical applications such as color grading and soft proofing to assess ranges of color matches instead of a single average match. We extended the CIE 2006 physiological observer by adding eight additional physiological parameters to model individual color-normal observers. These eight parameters control lens pigment density, macular pigment density, optical densities of L-, M-, and S-cone photopigments, and λmax shifts of L-, M-, and S-cone photopigments. By identifying the variability of each physiological parameter, the model can simulate color matching functions among color-normal populations using Monte Carlo simulation. The variabilities of the eight parameters were identified through two steps. In the first step, extensive reviews of past studies were performed for each of the eight physiological parameters. In the second step, the obtained variabilities were scaled to fit a color matching dataset. The model was validated using three different datasets: traditional color matching, applied color matching, and Rayleigh matches.

]]>
<![CDATA[Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models]]> https://www.researchpad.co/article/5989dad9ab0ee8fa60bb8fb4

Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both.

]]>
<![CDATA[Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences]]> https://www.researchpad.co/article/5989da72ab0ee8fa60b95305

Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.

]]>
<![CDATA[Revisiting the co-existence of Attention-Deficit/Hyperactivity Disorder and Chronic Tic Disorder in childhood—The case of colour discrimination, sustained attention and interference control]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0484

Objective

Attention Deficit / Hyperactivity Disorder (ADHD) and Chronic Tic Disorder (CTD) are two common and frequently co-existing disorders, probably following an additive model. But this is not yet clear for the basic sensory function of colour processing sensitive to dopaminergic functioning in the retina and higher cognitive functions like attention and interference control. The latter two reflect important aspects for psychoeducation and behavioural treatment approaches.

Methods

Colour discrimination using the Farnsworth-Munsell 100-hue Test, sustained attention during the Frankfurt Attention Inventory (FAIR), and interference liability during Colour- and Counting-Stroop-Tests were assessed to further clarify the cognitive profile of the co-existence of ADHD and CTD. Altogether 69 children were classified into four groups: ADHD (N = 14), CTD (N = 20), ADHD+CTD (N = 20) and healthy Controls (N = 15) and compared in cognitive functioning in a 2×2-factorial statistical model.

Results

Difficulties with colour discrimination were associated with both ADHD and CTD factors following an additive model, but in ADHD these difficulties tended to be more pronounced on the blue-yellow axis. Attention problems were characteristic for ADHD but not CTD. Interference load was significant in both Colour- and Counting-Stroop-Tests and unrelated to colour discrimination. Compared to Controls, interference load in the Colour-Stroop was higher in pure ADHD and in pure CTD, but not in ADHD+CTD, following a sub-additive model. In contrast, interference load in the Counting-Stroop did not reveal ADHD or CTD effects.

Conclusion

The co-existence of ADHD and CTD is characterized by additive as well as sub-additive performance impairments, suggesting that their co-existence may show simple additive characteristics of both disorders or a more complex interaction, depending on demand. The equivocal findings on interference control may indicate limited validity of the Stroop-Paradigm for clinical assessments.

]]>
<![CDATA[Considering the Influence of Nonadaptive Evolution on Primate Color Vision]]> https://www.researchpad.co/article/5989da20ab0ee8fa60b7ebc5

Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to consider adaptive and nonadaptive mechanisms of color vision evolution in primates.

]]>
<![CDATA[On the feature specificity of value-driven attention]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf666

When an otherwise inconspicuous stimulus is learned to predict a reward, this stimulus will automatically capture visual attention. This learned attentional bias is not specific to the precise object previously associated with reward, but can be observed for different stimuli that share a defining feature with the reward cue. Under certain circumstances, value-driven attentional biases can even transfer to new contexts in which the reward cues were not previously experienced, and can also be evident for different exemplars of a stimulus category, suggesting some degree of tolerance in the scope of the underlying bias. Whether a match to a reward-predictive feature is necessary to support value-driven attention, or whether similar-looking features also receive some degree of elevated priority following associative reward learning, remains an open question. Here, I examine the impact of learned associations between reward and red- and green-colored stimuli on the processing of other colors. The findings show that even though other colors experienced during training were non-predictive with respect to reward, the speed with which targets possessing these colors were identified in a subsequent test phase was affected by their similarity to the high-value color. Thus, value-driven attentional biases for stimulus features are imprecise, as would be predicted by a sensory gain model of value-driven attention.

]]>
<![CDATA[When Do Short-Wave Cones Signal Blue or Red? A Solution Introducing the Concept of Primary and Secondary Cone Outputs]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0d94

A recent paper by Oh and Sakata investigates the “incompletely solved mystery” of how the three cone responses map onto perceived hue, and particularly the S cone’s well-known problematic contribution to blueness and redness. Citing previous workers, they argue the twentieth century traditional multistage model does not satisfactorily account for color appearance. In their experiment, increasing S cone excitation with shortening wavelength from about 480–460 nm increased perceived blueness up to the unique Blue point at 470 nm, when (a) it began decreasing and (b) redness perception began increasing. The authors asked, What mechanism can be responsible for such functions? I demonstrate a solution. First, it is shown the problem does not lie in the traditional opponent color chromatic responses yellow-blue, red-green (y-b, r-g, which accurately predict the above functions), but in the traditional multistage model of mapping cone responses to chromatic response functions. Arguably, this is due to the S cone’s hypothetically signaling both blueness and redness by the same mechanism rather than by different, independent, mechanisms. Hence a new distinction or mechanism is proposed for a more accurate model, that introduces the new terms primary and secondary cone outputs. However, this distinction requires that the cones S, M, L each directly produce one of the three spectral chromatic responses b, g, y. Such a model was recently published, based on extremely high correlation of SML cone responsivities with the three spectral (bgy) chromatic responses. This model encodes the former directly onto the latter one-to-one as cone primary outputs, whilst S and L cones have a further or secondary function where each produces one of the two spectral lobes of r chromatic response. The proposed distinction between primary and secondary cone outputs is a new concept and useful tool in detailing cone outputs to chromatic channels, and provides a solution to the above “incompletely solved mystery.” Thus the S cone has a primary output producing the total b chromatic response and a secondary output that shares with the L cone the production of r chromatic response, thus aligning with Oh and Sokata’s results. The model similarly maps L cone to yellowness as primary output and to redness as secondary output.

]]>
<![CDATA[Colour preferences of UK garden birds at supplementary seed feeders]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcb76

Supplementary feeding of garden birds generally has benefits for both bird populations and human wellbeing. Birds have excellent colour vision, and show preferences for food items of particular colours, but research into colour preferences associated with artificial feeders is limited to hummingbirds. Here, we investigated the colour preferences of common UK garden birds foraging at seed-dispensing artificial feeders containing identical food. We presented birds simultaneously with an array of eight differently coloured feeders, and recorded the number of visits made to each colour over 370 30-minute observation periods in the winter of 2014/15. In addition, we surveyed visitors to a garden centre and science festival to determine the colour preferences of likely purchasers of seed feeders. Our results suggest that silver and green feeders were visited by higher numbers of individuals of several common garden bird species, while red and yellow feeders received fewer visits. In contrast, people preferred red, yellow, blue and green feeders. We suggest that green feeders may be simultaneously marketable and attractive to foraging birds.

]]>
<![CDATA[A Spectrophotometric Study of Plumage Color in the Eared Dove (Zenaida auriculata), the Most Abundant South American Columbiforme]]> https://www.researchpad.co/article/5989da80ab0ee8fa60b9a76f

For birds, plumage color perception is critical in social interactions such as courtship, in both monochromatic and dichromatic species. In the Eared Dove (Zenaida auriculata), perhaps the most abundant South American Columbiforme, the plumage of males and females looks alike and both sexes share the same melanistic coloration with gray and pink tones. The aim of this study was therefore to determine whether evident sexual dichromatism exists in the plumage of the Eared Dove using a spectrophotometry technique in the avian-visible range (300–700 nm). The results of the classic colorimetric variables analysis (hue, chroma and brightness) show that males are in general brighter and have higher UV chroma values than females. The avian visual model points to differences in achromatic and chromatic levels between males and females in body regions possibly involved in sexual selection (e.g. the crown). The model also indicates chromatic or achromatic differences in body regions not subject to sexual selection such as the black spots on the wing coverts and white tail bands, both of which may be involved in intra- or inter-gender-specific communication.

]]>
<![CDATA[Psychophysical Evaluation of Congenital Colour Vision Deficiency: Discrimination between Protans and Deutans Using Mollon-Reffin’s Ellipses and the Farnsworth-Munsell 100-Hue Test]]> https://www.researchpad.co/article/5989da9aab0ee8fa60ba369a

We have used the Farnsworth-Munsell 100-hue (FM 100) test and Mollon-Reffin (MR) test to evaluate the colour vision of 93 subjects, 30.4 ± 9.7 years old, who had red-green congenital colour vision deficiencies. All subjects lived in Belém (State of Pará, Brazil) and were selected by the State of Pará Traffic Department. Selection criteria comprised the absence of visual dysfunctions other than Daltonism and no history of systemic diseases that could impair the visual system performance. Results from colour vision deficient were compared with those from 127 normal trichromats, 29.3 ± 10.3 years old. For the MR test, measurements were taken around five points of the CIE 1976 colour space, along 20 directions irradiating from each point, in order to determine with high-resolution the corresponding colour discrimination ellipses (MacAdam ellipses). Three parameters were used to compare results obtained from different subjects: diameter of circle with same ellipse area, ratio between ellipse’s long and short axes, and ellipse long axis angle. For the FM 100 test, the parameters were: logarithm of the total number of mistakes and positions of mistakes in the FM diagram. Data were also simultaneously analysed in two or three dimensions as well as by using multidimensional cluster analysis. For the MR test, Mollon-Reffin Ellipse #3 (u’ = 0.225, v’ = 0.415) discriminated more efficiently than the other four ellipses between protans and deutans once it provided larger angular difference in the colour space between protan and deutan confusion lines. The MR test was more sensitive than the FM 100 test. It separated individuals by dysfunctional groups with greater precision, provided a more sophisticated quantitative analysis, and its use is appropriate for a more refined evaluation of different phenotypes of red-green colour vision deficiencies.

]]>
<![CDATA[Blue-Black or White-Gold? Early Stage Processing and the Color of 'The Dress']]> https://www.researchpad.co/article/5989da6dab0ee8fa60b93b6a

Purpose

In Feb 2015 an image of a dress posted on Tumblr triggered an internet phenomenon: Is the Dress blue and black (BB) or white and gold (WG)? Many claim BB and others insist WG while the true colors are BB. The prevailing theory is that assumptions about the illuminant govern perception of the Dress with WG due to bluish lighting and BB due to yellowish. Our purpose was to determine if early stage optical, retinal and/or neural factors also impact perception of the Dress.

Methods

Thirty-nine subjects were categorized as BB or WG based on their initial perception of the Dress and their perception reported when viewing the Dress on iPhone 5, iPad, and 22” LCD displays. Macular pigment optical density (MPOD) measured with the QuantifEye™ MPS II and visual brainwaves (VEPs) in response to brief presentations of a transparency of the Dress illuminated by a flashing light were measured on each subject and compared between BB and WG groups. Additionally, CIE chromaticity (color) and luminance (brightness) were measured from multiple areas of the Dress image to determine cone stimulation and contrast.

Results

Mean MPOD was higher in the WG group (0.49) vs. the BB (0.41, p = 0.04) and median values were higher as well (WG = 0.46, BB = 0.36, p = 0.03). There was no difference in VEP amplitude between groups (p > 0.85) but mean VEP latency was longer in WG (130 msec.) vs. the BB group (107 msec., p = 0.0005). Colorimetry of the Dress showed significantly greater stimulation of blue cones (contrast = 73%) vs. red and green sensitive cones (contrast = 13%).

Conclusions

Our findings indicate that observers with denser MPOD may be predisposed to perceive the Dress as WG due to great absorption of blue light by the macular pigment. Moreover, the novel, substantial stimulation of blue cones by the Dress may contribute to ambiguity and dichotomous perception since the blue cones are so sparse in the retina. Finally, the delayed WG VEPs indicate distinct neural processing in perception of the consistent with fMRI evidence that the WG percept is processed at higher cortical levels than the BB. These results do not fully explain the dichotomous perception of the Dress but do exemplify the need to consider early stage processing when elucidating ambiguous percepts and figures.

]]>
<![CDATA[The Emergence of Selective Attention through Probabilistic Associations between Stimuli and Actions]]> https://www.researchpad.co/article/5989da4dab0ee8fa60b8d2d7

In this paper we show how a multilayer neural network trained to master a context-dependent task in which the action co-varies with a certain stimulus in a first context and with a second stimulus in an alternative context exhibits selective attention, i.e. filtering out of irrelevant information. This effect is rather robust and it is observed in several variations of the experiment in which the characteristics of the network as well as of the training procedure have been varied. Our result demonstrates how the filtering out of irrelevant information can originate spontaneously as a consequence of the regularities present in context-dependent training set and therefore does not necessarily depend on specific architectural constraints. The post-evaluation of the network in an instructed-delay experimental scenario shows how the behaviour of the network is consistent with the data collected in neuropsychological studies. The analysis of the network at the end of the training process indicates how selective attention originates as a result of the effects caused by relevant and irrelevant stimuli mediated by context-dependent and context-independent bidirectional associations between stimuli and actions that are extracted by the network during the learning.

]]>
<![CDATA[Enhanced Fine-Form Perception Does Not Contribute to Gestalt Face Perception in Autism Spectrum Disorder]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb8b0

Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD.

]]>
<![CDATA[Colour categories are reflected in sensory stages of colour perception when stimulus issues are resolved]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0062

Debate exists about the time course of the effect of colour categories on visual processing. We investigated the effect of colour categories for two groups who differed in whether they categorised a blue-green boundary colour as the same- or different-category to a reliably-named blue colour and a reliably-named green colour. Colour differences were equated in just-noticeable differences to be equally discriminable. We analysed event-related potentials for these colours elicited on a passive visual oddball task and investigated the time course of categorical effects on colour processing. Support for category effects was found 100 ms after stimulus onset, and over frontal sites around 250 ms, suggesting that colour naming affects both early sensory and later stages of chromatic processing.

]]>