ResearchPad - complement-system https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The intergenic small non-coding RNA <i>ittA</i> is required for optimal infectivity and tissue tropism in <i>Borrelia burgdorferi</i>]]> https://www.researchpad.co/article/elastic_article_14635 Lyme disease is a tick-borne infection mediated by the spirochetal bacterium, Borrelia burgdorferi, that is responsible for greater than 300,000 infections in the United States per year. As such, additional knowledge regarding how this pathogen modulates its regulatory armamentarium is needed to understand how B. burgdorferi establishes and maintains infection. The identification and characterization of small, non-coding RNA molecules in living systems, designated as sRNAs, has recalibrated how we view post-transcriptional regulation. Recently, over 1,000 sRNAs were identified in B. burgdorferi. Despite the identification of these sRNAs, we do not understand how they affect infectivity or B. burgdorferi pathogenesis related outcomes. Here, we characterize the ittA B. burgdorferi sRNA and show that it is essential for optimal infection using murine experimental infection as our readout. We also track the effect of this sRNA on the transcriptional and proteomic profile as the first step in providing mechanistic insight into how this important sRNA mediates its regulatory effect.

]]>
<![CDATA[Differential immunoglobulin and complement levels in leprosy prior to development of reversal reaction and erythema nodosum leprosum]]> https://www.researchpad.co/article/5c58d665d5eed0c484031d84

Background

Leprosy is a treatable infectious disease caused by Mycobacterium leprae. However, there is additional morbidity from leprosy-associated pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL), which occur in 1 in 3 people with leprosy, even with effective treatment of M. leprae. There is currently no predictive marker in use to indicate which people with leprosy will develop these debilitating immune reactions. Our peripheral blood mononuclear cell (PBMC) transcriptome analysis revealed that activation of the classical complement pathway is common to both RR and ENL. Additionally, differential expression of immunoglobulin receptors and B cell receptors during RR and ENL support a role for the antibody-mediated immune response during both RR and ENL. In this study, we investigated B-cell immunophenotypes, total and M. leprae-specific antibodies, and complement levels in leprosy patients with and without RR or ENL. The objective was to determine the role of these immune mediators in pathogenesis and assess their potential as biomarkers of risk for immune reactions in people with leprosy.

Methodology/findings

We followed newly diagnosed leprosy cases (n = 96) for two years for development of RR or ENL. They were compared with active RR (n = 35), active ENL (n = 29), and healthy household contacts (n = 14). People with leprosy who subsequently developed ENL had increased IgM, IgG1, and C3d-associated immune complexes with decreased complement 4 (C4) at leprosy diagnosis. People who developed RR also had decreased C4 at leprosy diagnosis. Additionally, elevated anti-M. leprae antibody levels were associated with subsequent RR or ENL.

Conclusions

Differential co-receptor expression and immunoglobulin levels before and during immune reactions intimate a central role for humoral immunity in RR and ENL. Decreased C4 and elevated anti-M. leprae antibodies in people with new diagnosis of leprosy may be risk factors for subsequent development of leprosy immune reactions.

]]>
<![CDATA[Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems]]> https://www.researchpad.co/article/5c46651dd5eed0c4845177f7

The protein, zonulin, has emerged as a popular serological marker to assess the integrity of the intestinal mucosal barrier. However, there is limited information on the utility of serum zonulin to indicate gastrointestinal disease and the validity of zonulin detection in widely-used commercial assays. The current study reports differences in zonulin levels across patient groups with gastrointestinal dysfunction compared with healthy individuals, though methodological inconsistencies indicated that actual zonulin protein was not detected by the commercial assays applied. The nature of the assays’ detected antigen was investigated using immunoprecipitation followed by mass spectrometric analysis and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by protein staining. Top matches of the assays’ detected antigen included haptoglobin and complement C3 for the assay manufactured by CUSABIO (Wuhan, China) and complement C3 for the assay manufactured by Immundiagnostik AG (Bensheim, Germany). These findings confirm that current commercial zonulin assays are not detecting the actual protein as prehaptoglobin-2. Until assay methodology is improved, we advise the greater scientific and medical community to exercise caution in considering the measurement of serum zonulin as a marker of mucosal barrier integrity.

]]>
<![CDATA[EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis]]> https://www.researchpad.co/article/5c25450fd5eed0c48442bdc9

The ESX-1, type VII, secretion system represents the major virulence determinant of Mycobacterium tuberculosis, one of the most successful intracellular pathogens. Here, by combining genetic and high-throughput approaches, we show that EspL, a protein of 115 amino acids, is essential for mediating ESX-1-dependent virulence and for stabilization of EspE, EspF and EspH protein levels. Indeed, an espL knock-out mutant was unable to replicate intracellularly, secrete ESX-1 substrates or stimulate innate cytokine production. Moreover, proteomic studies detected greatly reduced amounts of EspE, EspF and EspH in the espL mutant as compared to the wild type strain, suggesting a role for EspL as a chaperone. The latter conclusion was further supported by discovering that EspL interacts with EspD, which was previously demonstrated to stabilize the ESX-1 substrates and effector proteins, EspA and EspC. Loss of EspL also leads to downregulation in M. tuberculosis of WhiB6, a redox-sensitive transcriptional activator of ESX-1 genes. Overall, our data highlight the importance of a so-far overlooked, though conserved, component of the ESX-1 secretion system and begin to delineate the role played by EspE, EspF and EspH in virulence and host-pathogen interaction.

]]>
<![CDATA[A C5a-Immunoglobulin complex in chronic lymphocytic leukemia patients is associated with decreased complement activity]]> https://www.researchpad.co/article/5c3667ced5eed0c4841a64d1

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western world. The therapeutic approach to CLL includes chemotherapeutic regimens and immunotherapy. Complement-mediated cytotoxicity, which is one of the mechanisms activated by the therapeutic monoclonal antibodies, depends on the availability and activity of the complement (C) system. The aim was to study the structure of circulating C components and evaluate the importance of C5 structural integrity for C activity in CLL patients. Blood samples were collected from 40 naïve CLL patients and 15 normal controls (NC). The Western blot analysis showed abnormal C5 pattern in some CLL patients, while patterns of C3 and C4 were similar in all subjects. Levels of the C activation markers sC5b-9 and C5a were quantified before and after activation via the classical (CP) and alternative (AP) pathways. In patients with abnormal C5, basal levels of sC5b-9 and C5a were increased while activities of the CP and of the CP C5-convertase, the immediate C5-upstream complex, were decreased compared to NC and to patients with normal C5. The data indicate a link between CP activation and apparent C5 alterations in CLL. This provides a potential prognostic tool that may personalize therapy by identifying a sub-group of CLL patients who display an abnormal C5 pattern, high basal levels of sC5b-9 and C5a, and impaired CP activity, and are likely to be less responsive to immunotherapy due to compromised CP activity.

]]>
<![CDATA[A monoclonal antibody targeting amyloid β (Aβ) restores complement factor I bioactivity: Potential implications in age-related macular degeneration and Alzheimer’s disease]]> https://www.researchpad.co/article/5b0e539c463d7e030321d286

Activation of the alternative complement cascade has been implicated in the pathogenesis of age related macular degeneration (AMD) and Alzheimer’s disease (AD). Amyloid β (Aβ), a component of drusen, may promote complement activation by inhibiting CFI bioactivity. We determined whether Aβ reduced CFI bioactivity and whether antibodies against Aβ including a monoclonal antibody, GSK933776 could restore CFI bioactivity. We also measured CFI bioactivity in plasma of subjects with AMD and AD. In support of the GSK933776 development program in AMD (geographic atrophy), we developed a quantitative assay to measure CFI bioactivity based on its ability to cleave C3b to iC3b, and repeated it in presence or absence of Aβ and anti-Aβ antibodies. Using this assay, we measured CFI bioactivity in plasma of 194 subjects with AMD, and in samples from subjects with AD that had been treated with GSK933776 as part of the GSK933776 development program in AD. Aβ reduced the CFI bioactivity by 5-fold and pre-incubation with GSK933776 restored CFI bioactivity. In subjects with AMD, plasma CFI levels and bioactivity were not significantly different from non-AMD controls. However, we detected a positive linear trend, suggesting increasing activity with disease severity. In subjects with AD, we observed a 10% and 27% increase in overall CFI bioactivity after treatment with GSK933776 during the second and third dose. Our studies indicate that CFI enzymatic activity can be inhibited by Aβ and be altered in proinflammatory diseases such as AMD and AD, in which deposition of Aβ and activation of the alternative complement cascade are believed to play a key role in the disease process.

]]>
<![CDATA[Requirements for Membrane Attack Complex Formation and Anaphylatoxins Binding to Collagen-Activated Platelets]]> https://www.researchpad.co/article/5989d9e2ab0ee8fa60b6a053

Background

The activation of complement during platelet activation is incompletely understood. Objectives: We sought to explore the formation of C5b-9 and anaphylatoxins binding to collagen-activated platelets.

Methods

C5b-9, anaphylatoxins C3a, C4a and C5a, and anaphylatoxin receptors C3aR1 and C5aR were measured by flow cytometry and/or confocal microscopy. Platelet microparticles were quantified by flow cytometry, and their C5b-9 content was determined by western blot analyses. In all experiments, sodium citrate was used for blood anticoagulation.

Results

C5b-9 rapidly formed on the platelet surface following activation with collagen, TRAP, ADP or A23187, but was surprisingly restricted to a subset of platelets (1 to 15%) independently of P-selectin or phosphatidylserine exposure. Following collagen activation, C5b-9-positive platelets in thrombi were found associated with collagen fibres. C5b-9 formation was obliterated by Mg2+-EGTA and significantly reduced by the thrombin inhibitor hirudin (−37%, p<0.05), but was unaffected by chondroitinase, compstatin, SCH79797 (PAR-1 inhibitor), or in the PRP of a MBL-deficient donor. Compstatin and Mg2+-EGTA, but not hirudin, SCH79797 or chondroitinase, inhibited the formation of collagen-induced microparticles (−71% and −44%, respectively, p<0.04). These microparticles contained greater amounts of C5b-9 compared with the other agonists. Platelet activation by collagen or convulxin resulted in the strong binding of anaphylatoxins and the exposure of receptors C3aR1 and C5aR (CD88) on their surface.

Conclusions

C5b-9 formation on collagen-activated platelets is i) partially controlled by thrombin, ii) restricted to a subset of platelets, and iii) can occur without P-selectin expression or phosphatidylserine exposure. Activated platelets bind anaphylatoxins on their surface and express C3a and C5a receptors, which may contribute to the localization of inflammatory processes during thrombosis.

]]>
<![CDATA[The role of insulin resistance in experimental diabetic retinopathy—Genetic and molecular aspects]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be02b7

Background

Diabetic retinopathy is characterized by defects in the retinal neurovascular unit. The underlying mechanisms of impairment–including reactive intermediates and growth-factor dependent signalling pathways and their possible interplay are incompletely understood. This study aims to assess the relative role of hyperglycemia and hyperinsulinemia alone or in combination on the gene expression patterning in the retina of animal models of diabetes.

Material and methods

As insulinopenic, hyperglycemic model reflecting type 1 diabetes, male STZ-Wistar rats (60mg/kg BW; i.p. injection at life age week 7) were used. Male obese ZDF rats (fa/fa) were used as type-2 diabetes model characterized by persisting hyperglycemia and transient hyperinsulinemia. Male obese ZF rats (fa/fa) were used reflecting euglycemia and severe insulin resistance. All groups were kept till an age of 20 weeks on respective conditions together with appropriate age-matched controls. Unbiased gene expression analysis was performed per group using Affymetrix gene arrays. Bioinformatics analysis included analysis for clustering and differential gene expression, and pathway and upstream activator analysis. Gene expression differences were confirmed by microfluidic card PCR technology.

Results

The most complex genetic regulation in the retina was observed in ZDF rats with a strong overlap to STZ-Wistar rats. Surprisingly, systemic insulin resistance alone in ZF rats without concomitant hyperglycemia did not induce any significant change in retinal gene expression pattern. Pathway analysis indicate an overlap between ZDF rats and STZ-treated rats in pathways like complement system activation, acute phase response signalling, and oncostatin-M signalling. Major array gene expression changes could be confirmed by subsequent PCR. An analysis of upstream transcriptional regulators revealed interferon-γ, interleukin-6 and oncostatin-M in STZ and ZDF rats. CONCLUSIONS: Systemic hyperinsulinaemia without hyperglycemia does not result in significant gene expression changes in retina. In contrast, persistent systemic hyperglycemia boosts much stronger expression changes with a limited number of known and new key regulators.

]]>
<![CDATA[The Interaction Pattern of Murine Serum Ficolin-A with Microorganisms]]> https://www.researchpad.co/article/5989d9f5ab0ee8fa60b6fff4

The ficolins are soluble pattern recognition molecules in the lectin pathway of complement, but the spectrum and mode of interaction with pathogens are largely unknown. In this study, we investigated the binding properties of the murine serum ficolin-A towards a panel of different clinical relevant microorganisms (N = 45) and compared the binding profile with human serum ficolin-2 and ficolin-3. Ficolin-A was able to bind Gram-positive bacteria strains including E. faecalis, L. monocytogenes and some S. aureus strains, but not to the investigated S. agalactiae (Group B streptococcus) strains. Regarding Gram-negative bacteria ficolin-A was able to bind to some E. coli and P. aeruginosa strains, but not to the investigated Salmonella strains. Of particular interest ficolin-A bound strongly to the pathogenic E. coli, O157:H7 and O149 strains, but it did not bind to the non-pathogenic E. coli, ATCC 25922 strain. Additionally, ficolin-A was able to bind purified LPS from these pathogenic strains. Furthermore, ficolin-A bound to a clinical isolate of the fungus A. fumigatus. In general ficolin-2 showed similar selective binding spectrum towards pathogenic microorganisms as observed for ficolin-A indicating specific pathophysiological roles of these molecules in host defence. In contrast, ficolin-3 did not bind to any of the investigated microorganisms and the anti-microbial role of ficolin-3 still remains elusive.

]]>
<![CDATA[Analysis of Risk Alleles and Complement Activation Levels in Familial and Non-Familial Age-Related Macular Degeneration]]> https://www.researchpad.co/article/5989da13ab0ee8fa60b7a25f

Aims

Age-related macular degeneration (AMD) is a multifactorial disease, in which complement-mediated inflammation plays a pivotal role. A positive family history is an important risk factor for developing AMD. Certain lifestyle factors are shown to be significantly associated with AMD in non-familial cases, but not in familial cases. This study aimed to investigate whether the contribution of common genetic variants and complement activation levels differs between familial and sporadic cases with AMD.

Methods and Results

1216 AMD patients (281 familial and 935 sporadic) and 1043 controls (143 unaffected members with a family history of AMD and 900 unrelated controls without a family history of AMD) were included in this study. Ophthalmic examinations were performed, and lifestyle and family history were documented with a questionnaire. Nine single nucleotide polymorphisms (SNPs) known to be associated with AMD were genotyped, and serum concentrations of complement components C3 and C3d were measured. Associations were assessed in familial and sporadic individuals. The association with risk alleles of the age-related maculopathy susceptibility 2 (ARMS2) gene was significantly stronger in sporadic AMD patients compared to familial cases (p = 0.017 for all AMD stages and p = 0.003 for advanced AMD, respectively). ARMS2 risk alleles had the largest effect in sporadic cases but were not significantly associated with AMD in densely affected families. The C3d/C3 ratio was a significant risk factor for AMD in sporadic cases and may also be associated with familial cases. In patients with a densely affected family this effect was particularly strong with ORs of 5.37 and 4.99 for all AMD and advanced AMD respectively.

Conclusion

This study suggests that in familial AMD patients, the common genetic risk variant in ARMS2 is less important compared to sporadic AMD. In contrast, factors leading to increased complement activation appear to play a larger role in patients with a positive family history compared to sporadic patients. A better understanding of the different contributions of risk factors in familial compared to non-familial AMD will aid the development of reliable prediction models for AMD, and may provide individuals with more accurate information regarding their individual risk for AMD. This information is especially important for individuals who have a positive family history for AMD.

]]>
<![CDATA[Non-Synonymous Polymorphisms in the FCN1 Gene Determine Ligand-Binding Ability and Serum Levels of M-Ficolin]]> https://www.researchpad.co/article/5989db08ab0ee8fa60bc9355

Background

The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the lectin pathway. The lectin pathway is multifaceted with activities spanning from complement activation to coagulation, autoimmunity, ischemia-reperfusion injury and embryogenesis. Our aim was to explore associations between SNPs in FCN1, encoding M-ficolin and corresponding protein concentrations, and the impact of non-synonymous SNPs on protein function.

Principal Findings

We genotyped 26 polymorphisms in the FCN1 gene and found 8 of these to be associated with M-ficolin levels in a cohort of 346 blood donors. Four of those polymorphisms were located in the promoter region and exon 1 and were in high linkage disequilibrium (r2≥0.91). The most significant of those were the AA genotype of −144C>A (rs10117466), which was associated with an increase in M-ficolin concentration of 26% compared to the CC genotype. We created recombinant proteins corresponding to the five non-synonymous mutations encountered and found that the Ser268Pro (rs150625869) mutation lead to loss of M-ficolin production. This was backed up by clinical observations, indicating that an individual homozygote of Ser268Pro would be completely M-ficolin deficient. Furthermore, the Ala218Thr (rs148649884) and Asn289Ser (rs138055828) were both associated with low M-ficolin levels, and the mutations crippled the ligand-binding capability of the recombinant M-ficolin, as indicated by the low binding to Group B Streptococcus.

Significance

Overall, our study interlinks the genotype and phenotype relationship concerning polymorphisms in FCN1 and corresponding concentrations and biological functions of M-ficolin. The elucidations of these associations provide information for future genetic studies in the lectin pathway and complement system.

]]>
<![CDATA[Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd95

Staphyloccus aureus is a major human pathogen leading frequently to sepsis and soft tissue infections with abscesses. Multiple virulence factors including several immune modulating molecules contribute to its survival in the host. When S. aureus invades the human body, one of the first line defenses is the complement system, which opsonizes the bacteria with C3b and attract neutrophils by release of chemotactic peptides. Neutrophils express Complement receptor-1 [CR1, CD35) that interacts with the C3b-opsonized particles and thereby plays an important role in pathogen recognition by phagocytic cells. In this study we observed that a fraction of S. aureus culture supernatant prevented binding of C3b to neutrophils. This fraction consisted of S. aureus leukocidins and Efb. The C-terminus of Efb is known to bind C3b and shares significant sequence homology to the extracellular complement binding protein [Ecb). Here we show that S. aureus Ecb displays various mechanisms to block bacterial recognition by neutrophils. The presence of Ecb blocked direct interaction between soluble CR1 and C3b and reduced the cofactor activity of CR1 in proteolytic inactivation of C3b. Furthermore, Ecb could dose-dependently prevent recognition of C3b by cell-bound CR1 that lead to impaired phagocytosis of NHS-opsonized S. aureus. Phagocytosis was furthermore reduced in the presence of soluble CR1 [sCR1). These data indicate that the staphylococcal protein Ecb prevents recognition of C3b opsonized bacteria by neutrophil CR1 leading to impaired killing by phagocytosis and thereby contribute to immune evasion of S. aureus.

]]>
<![CDATA[Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection]]> https://www.researchpad.co/article/5989da18ab0ee8fa60b7bf5a

Background

Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella.

Methodology/Principal Findings

Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both). IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing.

Conclusion/Significance

IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of lack of in vitro killing by anti-LPS antibodies from a minority of HIV-infected individuals with impaired immune homeostasis.

]]>
<![CDATA[Netrin-1 Reduces Monocyte and Macrophage Chemotaxis towards the Complement Component C5a]]> https://www.researchpad.co/article/5989da3bab0ee8fa60b87f58

Netrin-1, acting at its cognate receptor UNC5b, has been previously demonstrated to inhibit CC chemokine-induced immune cell migration. In line with this, we found that netrin-1 was able to inhibit CCL2-induced migration of bone marrow derived macrophages (BMDMs). However, whether netrin-1 is capable of inhibiting chemotaxis to a broader range of chemoattractants remains largely unexplored. As our initial experiments demonstrated that RAW264.7 and BMDMs expressed high levels of C5a receptor 1 (C5aR1) on their surface, we aimed to determine the effect of netrin-1 exposure on monocyte/macrophage cell migration induced by C5a, a complement peptide that plays a major role in multiple inflammatory pathologies. Treatment of RAW264.7 macrophages, BMDMs and human monocytes with netrin-1 inhibited their chemotaxis towards C5a, as measured using two different real-time methods. This inhibitory effect was found to be dependent on netrin-1 receptor signalling, as an UNC5b blocking antibody was able to reverse netrin-1 inhibition of C5a induced BMDM migration. Treatment of BMDMs with netrin-1 had no effect on C5aR1 proximal signalling events, as surface C5aR1 expression, internalisation and intracellular Ca2+ release following C5aR1 ligation remained unaffected after netrin-1 exposure. We next examined receptor distal events that occur following C5aR1 activation, but found that netrin-1 was unable to inhibit C5a induced phosphorylation of ERK1/2, Akt and p38, pathways important for cellular migration. Furthermore, netrin-1 treatment had no effect on BMDM cytoskeletal rearrangement following C5a stimulation as determined by microscopy and real-time electrical impedance sensing. Taken together these data highlight that netrin-1 inhibits monocyte and macrophage cell migration, but that the mechanism behind this effect remains unresolved. Nevertheless, netrin-1 and its cognate receptors warrant further investigation as they may represent a potential avenue for the development of novel anti-inflammatory therapeutics.

]]>
<![CDATA[How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?]]> https://www.researchpad.co/article/5989da0cab0ee8fa60b77fee

Social interactions shape the patterns of spreading processes in a population. Techniques such as diaries or proximity sensors allow to collect data about encounters and to build networks of contacts between individuals. The contact networks obtained from these different techniques are however quantitatively different. Here, we first show how these discrepancies affect the prediction of the epidemic risk when these data are fed to numerical models of epidemic spread: low participation rate, under-reporting of contacts and overestimation of contact durations in contact diaries with respect to sensor data determine indeed important differences in the outcomes of the corresponding simulations with for instance an enhanced sensitivity to initial conditions. Most importantly, we investigate if and how information gathered from contact diaries can be used in such simulations in order to yield an accurate description of the epidemic risk, assuming that data from sensors represent the ground truth. The contact networks built from contact sensors and diaries present indeed several structural similarities: this suggests the possibility to construct, using only the contact diary network information, a surrogate contact network such that simulations using this surrogate network give the same estimation of the epidemic risk as simulations using the contact sensor network. We present and compare several methods to build such surrogate data, and show that it is indeed possible to obtain a good agreement between the outcomes of simulations using surrogate and sensor data, as long as the contact diary information is complemented by publicly available data describing the heterogeneity of the durations of human contacts.

]]>
<![CDATA[Effects of MASP-1 of the Complement System on Activation of Coagulation Factors and Plasma Clot Formation]]> https://www.researchpad.co/article/5989db48ab0ee8fa60bd9654

Background

Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis.

Methodology/Principal Findings

We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis.

Conclusions/Significance

We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.

]]>
<![CDATA[Impact of Reducing Complement Inhibitor Binding on the Immunogenicity of Native Neisseria meningitidis Outer Membrane Vesicles]]> https://www.researchpad.co/article/5989dadbab0ee8fa60bb9ab1

Neisseria meningitidis recruits host human complement inhibitors to its surface to down-regulate complement activation and enhance survival in blood. We have investigated whether such complement inhibitor binding occurs after vaccination with native outer membrane vesicles (nOMVs), and limits immunogenicity of such vaccines. To this end, nOMVs reactogenic lipopolysaccharide was detoxified by deletion of the lpxl1 gene (nOMVlpxl1). nOMVs unable to bind human complement factor H (hfH) were generated by additional deletions of the genes encoding factor H binding protein (fHbp) and neisserial surface protein A (NspA) (nOMVdis). Antibody responses elicited in mice with nOMVdis were compared to those elicited with nOMVlpxl1 in the presence of hfH. Results demonstrate that the administration of human fH to mice immunized with fHbp containing OMVlpxl1 decreased immunogenicity against fHbp (but not against the OMV as a whole). The majority of the OMV-induced bactericidal immune response (OMVlpxl1 or OMVdis) was versus PorA. Despite a considerable reduction of hfH binding to nOMVdis, and the absence of the vaccine antigen fHbp, immunogenicity in mice was not different from nOMVlpxl1, in the absence or presence of hfH (serum bactericidal titers of 1:64 vs 1:128 after one dose in the nOMVdis and nOMVlpxl1–immunized groups respectively). Therefore, partial inhibition of fH binding did not enhance immunity in this model.

]]>
<![CDATA[Functional Analysis of Ficolin-3 Mediated Complement Activation]]> https://www.researchpad.co/article/5989db26ab0ee8fa60bd05e4

The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway.

]]>
<![CDATA[A C1q Domain Containing Protein from Scallop Chlamys farreri Serving as Pattern Recognition Receptor with Heat-Aggregated IgG Binding Activity]]> https://www.researchpad.co/article/5989da0fab0ee8fa60b78e8a

Background

The C1q domain containing (C1qDC) proteins refer to a family of all proteins that contain the globular C1q (gC1q) domain, and participate in a series of immune responses depending on their gC1q domains to bind a variety of self and non-self binding ligands.

Methodology

In the present study, the mRNA expression patterns, localization, and activities of a C1qDC protein from scallop Chlamys farreri (CfC1qDC) were investigated to understand its possible functions in innate immunity. The relative expression levels of CfC1qDC mRNA in hemocytes were all significantly up-regulated after four typical PAMPs (LPS, PGN, β-glucan and polyI:C) stimulation. During the embryonic development of scallop, the mRNA transcripts of CfC1qDC were detected in all the stages, and the expression level was up-regulated from D-hinged larva and reached the highest at eye-spot larva. The endogenous CfC1qDC was dominantly located in the hepatopancreas, gill, kidney and gonad of adult scallop through immunofluorescence. The recombinant protein of CfC1qDC (rCfC1qDC) could not only bind various PAMPs, such as LPS, PGN, β-glucan as well as polyI:C, but also enhance the phagocytic activity of scallop hemocytes towards Escherichia coli. Meanwhile, rCfC1qDC could interact with human heat-aggregated IgG, and this interaction could be inhibited by LPS.

Conclusions

All these results indicated that CfC1qDC in C. farreri not only served as a PRR involved in the PAMPs recognition, but also an opsonin participating in the clearance of invaders in innate immunity. Moreover, the ability of CfC1qDC to interact with immunoglobulins provided a clue to understand the evolution of classical pathway in complement system.

]]>
<![CDATA[The Stability of Complement-Mediated Bactericidal Activity in Human Serum against Salmonella]]> https://www.researchpad.co/article/5989da6bab0ee8fa60b92e59

The complement cascade includes heat-labile proteins and care is required when handling serum in order to preserve its functional integrity. We have previously used a whole human serum bactericidal assay to show that antibody and an intact complement system are required in blood for killing of invasive isolates of Salmonella. The aim of the present study was to evaluate the conditions under which human serum can be stored and manipulated while maintaining complement integrity. Serum bactericidal activity against Salmonella was maintained for a minimum of 35 days when stored at 4°C, eight days at 22°C and 54 hours at 37°C. Up to three freeze-thaw cycles had no effect on the persistence of bactericidal activity and hemolytic complement assays confirmed no effect on complement function. Delay in the separation of serum for up to four days from clotted blood stored at 22°C did not affect bactericidal activity. Dilution of serum resulted in an increased rate of loss of bactericidal activity and so serum should be stored undiluted. These findings indicate that the current guidelines concerning manipulation and storage of human serum to preserve complement integrity and function leave a large margin for safety with regards to bactericidal activity against Salmonella. The study provides a scheme for determining the requirements for serum handling in relation to functional activity of complement in other systems.

]]>