ResearchPad - compression https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Effect of experimental, morphological and mechanical factors on the murine spinal cord subjected to transverse contusion: A finite element study]]> https://www.researchpad.co/article/elastic_article_8463 Finite element models combined with animal experimental models of spinal cord injury provides the opportunity for investigating the effects of the injury mechanism on the neural tissue deformation and the resulting tissue damage. Thus, we developed a finite element model of the mouse cervical spinal cord in order to investigate the effect of morphological, experimental and mechanical factors on the spinal cord mechanical behavior subjected to transverse contusion. The overall mechanical behavior of the model was validated with experimental data of unilateral cervical contusion in mice. The effects of the spinal cord material properties, diameter and curvature, and of the impactor position and inclination on the strain distribution were investigated in 8 spinal cord anatomical regions of interest for 98 configurations of the model. Pareto analysis revealed that the material properties had a significant effect (p<0.01) for all regions of interest of the spinal cord and was the most influential factor for 7 out of 8 regions. This highlighted the need for comprehensive mechanical characterization of the gray and white matter in order to develop effective models capable of predicting tissue deformation during spinal cord injuries.

]]>
<![CDATA[Height of overburden fracture based on key strata theory in longwall face]]> https://www.researchpad.co/article/Nb6c965ed-0040-4b7a-b381-dffd2122531d

Among the three overburden zones (the caving zone, the fracture zone, and the continuous deformation zone) in longwall coal mining, the continuous deformation zone is often considered to be continuous without cracks, so continuum mechanics can be used to calculate the subsidence of overburden strata. Longwall coal mining, however, will induce the generation of wide cracks in the surface and thus may cause the continuous deformation zone to fracture. In this paper, whether there are cracks in the continuous deformation zone as well as the height of overburden fracture in longwall face and the subsidence and deformation of strata of different fracture penetration ratios were studied by means of physical simulation, theoretical analysis and numerical simulation. The results show that: (1) Rock stratum starts to fracture as long as it has slightly subsided for only tens of millimeters, and the height of fracture development is the height of working face overburden. (2) With the increase of fracture penetration ratio, the subsidence of key strata remains basically unchanged; the surface deformation range and the maximum compression deformation decrease, while the maximum horizontal movement and maximum horizontal tensile deformation increase. Therefore, the subsidence of overburden strata which have fractured but have not broken can be calculated through the continuum mechanics method.

]]>
<![CDATA[Interventions to improve the quality of bystander cardiopulmonary resuscitation: A systematic review]]> https://www.researchpad.co/article/5c6dc9b8d5eed0c48452a083

Background

Performing high-quality bystander cardiopulmonary resuscitation (CPR) improves the clinical outcomes of victims with sudden cardiac arrest. Thus far, no systematic review has been performed to identify interventions associated with improved bystander CPR quality.

Methods

We searched Ovid MEDLINE, Ovid EMBASE, EBSCO CINAHL, Ovid PsycInfo, Thomson Reuters SCI-EXPANDED, and the Cochrane Central Register of Controlled Trials to retrieve studies published from 1 January 1966 to 5 October 2018 associated with interventions that could improve the quality of bystander CPR. Data regarding participant characteristics, interventions, and design and outcomes of included studies were extracted.

Results

Of the initially identified 2,703 studies, 42 were included. Of these, 32 were randomized controlled trials. Participants included adults, high school students, and university students with non-medical professional majors. Interventions improving bystander CPR quality included telephone dispatcher-assisted CPR (DA-CPR) with simplified or more concrete instructions, compression-only CPR, and other on-scene interventions, such as four-hand CPR for elderly rescuers, kneel on opposite sides for two-person CPR, and CPR with heels for a tired rescuer. Devices providing real-time feedback and mobile devices containing CPR applications or software were also found to be beneficial in improving the quality of bystander CPR. However, using mobile devices for improving CPR quality or for assisting DA-CPR might cause rescuers to delay starting CPR.

Conclusions

To further improve the clinical outcomes of victims with cardiac arrest, these effective interventions may be included in the guidelines for bystander CPR.

]]>
<![CDATA[Unequal error protection technique for video streaming over MIMO-OFDM systems]]> https://www.researchpad.co/article/5c478c5ad5eed0c484bd1c4d

In this paper, a novel unequal error protection (UEP) technique is proposed for video streaming over multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. Based on the concept of hierarchical quadrature amplitude modulation (HQAM) UEP and multi-antenna UEP, the proposed technique combines the relative protection levels (PLs) of constellation symbols and the differentiated PLs of the transmit antennas. In the proposed technique, standard square quadrature amplitude modulation (QAM) constellations are used instead of HQAM so that the QAM mapper at the transmitter side and the soft decision calculation at the receiver side remain unchanged, but the UEP benefit of HQAM is retained. The superior performance of the proposed technique is explained by the improved connections between data with various priorities and data paths with various PLs. The assumed video compression method is H.264/AVC, which is known to be commercially successful. The IEEE802.16m system is adopted as a data transmission system. With the aid of realistic simulations in strict accordance with the standards of IEEE802.16m systems and H.264/AVC video compression systems, the proposed technique HQAM-multi-antenna UEP is shown to improve the video quality significantly for a given average bit error rate when compared with previous techniques.

]]>
<![CDATA[Remote access protocols for Desktop-as-a-Service solutions]]> https://www.researchpad.co/article/5c390ba8d5eed0c48491db6c

The use of remote desktop services on virtualized machines is a general trend to reduce the cost of desktop seats. Instead of assigning a physical machine with its operating system and software to each user, it is considerably easier to manage a light client machine that connects to a server where the instance of the user’s desktop machine actually executes. Citrix and VMware have been major suppliers of these systems in private clouds. Desktop-as-a-Service solutions such as Amazon WorkSpaces offer a similar functionality, yet in a public cloud environment. In this paper, we review the main offerings of remote desktop protocols for a cloud deployment. We evaluate the necessary network resources using a traffic model based on self-similar processes. We also evaluate the quality of experience perceived by the user, in terms of image quality and interactivity, providing values of Mean Opinion Score (MOS). The results confirm that the type of application running on the remote servers and the mix of users must be considered to determine the bandwidth requirements. Applications such as web browsing result in unexpectedly high traffic rates and long bursts, more than the case of desktop video playing, because the on-page animations are rendered on the server.

]]>
<![CDATA[Elution and Mechanical Strength of Vancomycin-Loaded Bone Cement: In Vitro Study of the Influence of Brand Combination]]> https://www.researchpad.co/article/5989db07ab0ee8fa60bc8d92

Antibiotic-loaded bone cement (ALBC) is widely used in orthopaedic surgery for both prevention and treatment of infection. Little is known about the effect of different brand combinations of antibiotic and bone cement on the elution profile and mechanical strength of ALBC. Standardized specimens that consisted of one of the 4 brands of bone cement and one of the 3 brands of vancomycin were fashioned, producing 12 combinations of ALBC. Two dosages of vancomycin in 40g bone cement were used to represent the high (4g vancomycin) and low (1g vancomycin) dose groups. Concentrations of vancomycin elution from ALBC was measured for up to 336 hours. The ultimate compression strength was tested at axial compression using a material testing machine before and after elution. In both high-dose and low-dose groups, Lyo-Vancin in PALACOS bone cement resulted in the highest cumulative elution and Vanco in Simplex P bone cement resulted in the lowest elution (458% and 65% higher in high- and low-dose groups, respectively). The mechanical strength was not significantly compromised in all groups with low dose vancomycin (range: 70.31 ± 2.74 MPa to 87.28 ± 8.26MPa after elution). However, with the addition of high dose vancomycin, there was a mixed amount of reduction in the ultimate compression strength after cement aging, ranging from 5% (Vanco in Simplex P, 81.10 ± 0.48 MPa after elution) to 38% (Sterile vancomycin in CMW, 60.94 ± 5.74 MPa after elution). We concluded that the selection of brands of vancomycin and bone cement has a great impact on the release efficacy and mechanical strength of ALBC.

]]>
<![CDATA[Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction]]> https://www.researchpad.co/article/5989da31ab0ee8fa60b848f8

High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.

]]>
<![CDATA[A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc81d

This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

]]>
<![CDATA[Towards an efficient compression of 3D coordinates of macromolecular structures]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc146

The size and complexity of 3D macromolecular structures available in the Protein Data Bank is constantly growing. Current tools and file formats have reached limits of scalability. New compression approaches are required to support the visualization of large molecular complexes and enable new and scalable means for data analysis. We evaluated a series of compression techniques for coordinates of 3D macromolecular structures and identified the best performing approaches. By balancing compression efficiency in terms of the decompression speed and compression ratio, and code complexity, our results provide the foundation for a novel standard to represent macromolecular coordinates in a compact and useful file format.

]]>
<![CDATA[Hands-Off Time for Endotracheal Intubation during CPR Is Not Altered by the Use of the C-MAC Video-Laryngoscope Compared to Conventional Direct Laryngoscopy. A Randomized Crossover Manikin Study]]> https://www.researchpad.co/article/5989d9faab0ee8fa60b719a5

Introduction

Sufficient ventilation and oxygenation through proper airway management is essential in patients undergoing cardio-pulmonary resuscitation (CPR). Although widely discussed, securing the airway using an endotracheal tube is considered the standard of care. Endotracheal intubation may be challenging and causes prolonged interruption of chest compressions. Videolaryngoscopes have been introduced to better visualize the vocal cords and accelerate intubation, which makes endotracheal intubation much safer and may contribute to intubation success. Therefore, we aimed to compare hands-off time and intubation success of direct laryngoscopy with videolaryngoscopy (C-MAC, Karl Storz, Tuttlingen, Germany) in a randomized, cross-over manikin study.

Methods

Twenty-six anesthesia residents and twelve anesthesia consultants of the University Hospital Zurich were recruited through a voluntary enrolment. All participants performed endotracheal intubation using direct laryngoscopy and C-MAC in a random order during ongoing chest compressions. Participants were strictly advised to stop chest compression only if necessary.

Results

The median hands-off time was 1.9 seconds in direct laryngoscopy, compared to 3 seconds in the C-MAC group. In direct laryngoscopy 39 intubation attempts were recorded, resulting in an overall first intubation attempt success rate of 97%, compared to 38 intubation attempts and 100% overall first intubation attempt success rate in the C-MAC group.

Conclusion

As a conclusion, the results of our manikin-study demonstrate that video laryngoscopes might not be beneficial compared to conventional, direct laryngoscopy in easily accessible airways under CPR conditions and in experienced hands. The benefits of video laryngoscopes are of course more distinct in overcoming difficult airways, as it converts a potential “blind intubation” into an intubation under visual control.

]]>
<![CDATA[Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia]]> https://www.researchpad.co/article/5989da07ab0ee8fa60b763ab

Background

Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used.

Methods

Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested.

Results

We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C.

Conclusion

To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia.

]]>
<![CDATA[Comparison of two SVD-based color image compression schemes]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd55

Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR.

]]>
<![CDATA[Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina]]> https://www.researchpad.co/article/5989db18ab0ee8fa60bcd7d2

Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.

]]>
<![CDATA[Mammographic compression in Asian women]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca18

Objectives

To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study.

Methods

We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35–80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs.

Results

Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p<0.0001). Compression parameters including compression force, compression pressure, CBT and breast contact area were widely variable between [relative standard deviation (RSD)≥21.0%] and within (p<0.0001) Asian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2–11.0%, and caused no significant effects on image quality (p>0.05).

Conclusions

Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

]]>
<![CDATA[Feedback on the Rate and Depth of Chest Compressions during Cardiopulmonary Resuscitation Using Only Accelerometers]]> https://www.researchpad.co/article/5989da33ab0ee8fa60b854b0

Background

Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth.

Materials and Methods

We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor.

Results

The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method.

Conclusions

Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.

]]>
<![CDATA[Chaos-Based Simultaneous Compression and Encryption for Hadoop]]> https://www.researchpad.co/article/5989da5bab0ee8fa60b8fdb2

Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.

]]>
<![CDATA[Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading]]> https://www.researchpad.co/article/5989dae5ab0ee8fa60bbd147

In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio.

]]>
<![CDATA[Skipping Selected Steps of DWT Computation in Lossless JPEG 2000 for Improved Bitrates]]> https://www.researchpad.co/article/5989d9fbab0ee8fa60b71ec6

In order to improve bitrates of lossless JPEG 2000, we propose to modify the discrete wavelet transform (DWT) by skipping selected steps of its computation. We employ a heuristic to construct the skipped steps DWT (SS-DWT) in an image-adaptive way and define fixed SS-DWT variants. For a large and diverse set of images, we find that SS-DWT significantly improves bitrates of non-photographic images. From a practical standpoint, the most interesting results are obtained by applying entropy estimation of coding effects for selecting among the fixed SS-DWT variants. This way we get the compression scheme that, as opposed to the general SS-DWT case, is compliant with the JPEG 2000 part 2 standard. It provides average bitrate improvement of roughly 5% for the entire test-set, whereas the overall compression time becomes only 3% greater than that of the unmodified JPEG 2000. Bitrates of photographic and non-photographic images are improved by roughly 0.5% and 14%, respectively. At a significantly increased cost of exploiting a heuristic, selecting the steps to be skipped based on the actual bitrate instead of an estimated one, and by applying reversible denoising and lifting steps to SS-DWT, we have attained greater bitrate improvements of up to about 17.5% for non-photographic images.

]]>
<![CDATA[Effects of different lower-limb sensory stimulation strategies on postural regulation—A systematic review and meta-analysis]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9bb

Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges’ g) standardized mean differences (SMD) = 0.31–0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition—eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68–0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual needs.

]]>
<![CDATA[Rotational Stability of Scaphoid Osteosyntheses: An In Vitro Comparison of Small Fragment Cannulated Screws to Novel Bone Screw Sets]]> https://www.researchpad.co/article/5989dafaab0ee8fa60bc479f

Background

The current standard of care for operative repair of scaphoid fractures involves reduction and internal fixation with a single headless compression screw. However, a compression screw in isolation does not necessarily control rotational stability at a fracture or nonunion site. The single screw provides rotational control through friction and bone interdigitation from compression at the fracture site. We hypothesize that osteosyntheses with novel bone screw sets (BSS) equipped with anti-rotational elements provide improved rotational stability.

Methods

Stability of osteosynthesis under increasing cyclic torsional loading was investigated on osteotomized cadaveric scaphoids. Two novel prototype BSS, oblique type (BSS-obl.) and longitudinal type (BSS-long.) were compared to three conventional screws: Acutrak2®mini, HCS®3.0 and Twinfix®. Biomechanical tests were performed on scaphoids from single donors in paired comparison and analyzed by balanced incomplete random block design. Loading was increased by 50 mNm increments with 1,000 cycles per torque level and repeated until a rotational clearance of 10°. Primary outcome measure was the number of cycles to 10° clearance, secondary outcome measure was the maximum rotational clearance for each torque level.

Findings

BSS-obl. performed significantly better than Acutrak2®mini and HCS® (p = 0.015, p<0.0001). BSS-long. performed significantly better than HCS® (p = 0.010). No significant difference in performance between BSS-obl. and BSS-long. (p = 0.361), between BSS obl. and Twinfix® (p = 0.50) and BSS long. and Twinfix® (p = 0.667) was detected. Within the torque range up to 200 mNm, four of 21 (19%) BSS-long. and four of 21 (19%) BSS-obl. preparations showed early failure. The same loading led to early failure in four (29%) Twinfix®, seven (50%) Acutrak2®mini and 10 (71%) HCS® of 14 screw samples, respectively.

Conclusions

For both BSS and to a lesser extent for Twinfix® (as dual-component screw), higher rotational stabilities were identified in comparison to single component headless compression screws.

]]>