ResearchPad - conditioned-response Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Social approach and place aversion in relation to conspecific pain in dairy calves]]> Despite scientific interest in animal empathy, and growing public concern for farm animal welfare, the empathic abilities of farm animals remain under researched. In this study, we investigated empathic responses of young Holstein dairy calves to conspecifics recovering from hot-iron disbudding, a painful procedure common on dairy farms. A combination of social approach and place conditioning was used. First, ‘observer’ calves witnessed two ‘demonstrator’ calves recover from either a painful procedure (hot-iron disbudding and sedation) or a sham procedure (sedation alone) in distinct pens. Observer calves spent more time in proximity and paid more attention to calves recovering from the painful procedure compared to sham calves (proximity: 59.6 ± 4.3%; attention: 54.3 ± 1.5%). Observers were then tested for conditioned place aversion (in the absence of demonstrators) at 48h, 72h and 96h after the second demonstration; observers tended to avoid the pen associated with conspecific pain during the second of the three tests, spending 34.8 ± 9.6% of their time in this pen. No strong evidence of pain empathy was found, but our tentative results encourage further research on empathy in animals.

<![CDATA[Physical therapists’ perspectives on using contextual factors in clinical practice: Findings from an Italian national survey]]>


Contextual factors (CFs) represent a potential therapeutic tool to boost physiotherapy outcomes, triggering placebo effects. Nevertheless, no evidence about the use of CFs among physical therapists is currently available.


To investigate the use of CFs and the opinion of Italian physical therapists specialized in Orthopaedic Manual Therapy (OMTs) on their therapeutic benefits.


An exploratory cross-sectional online survey.


A 17-item questionnaire and 2 clinical vignettes assessed the perspective of OMTs on the adoption of CFs in daily clinical practice. The target population was composed of 906 OMTs. An online survey was performed in 2016 using SurveyMonkey Software. Data were analyzed by descriptive and inferential statistics.


A total of 558 volunteers (61.6% of the target OMT population) participated in the study. Half of the participants (52.0%) claimed to use CFs frequently in their practice. More of 50% of OMTs valued the therapeutic significance of CFs for different health problems as determined by a combined psychological and physiological effect. OMTs considered the use of CFs ethically acceptable when they exert beneficial therapeutic effects and their effectiveness has emerged in previous clinical experiences (30.6%). They disagreed on the adoption of CFs when they are deceptive (14.1%). Moreover, OMTs did not communicate the adoption of CFs to patients (38.2%), and CFs were usually used in addition to other interventions to optimize clinical responses (19.9%). Psychological mechanisms, patient’s expectation and conditioning were believed to be the main components behind CFs (7.9%).


Considering that the data collected were self-reported and retrospective, recall and response biases may limit the internal and external validity of the findings.


OMTs used CFs in their clinical practice and believed in their therapeutic effect. The knowledge of CFs, placebo and nocebo mechanisms and their clinical effects should be included in physical therapists’ university studies.

<![CDATA[Developmental Changes in Hippocampal CA1 Single Neuron Firing and Theta Activity during Associative Learning]]>

Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US). Learning increased as a function of age, with the P21-23 and P24-26 groups learning faster than the P17-19 group. Age- and learning-related changes in both theta and single neuron activity were observed. CA1 pyramidal cells in the older age groups showed greater task-related activity than the P17-19 group during CS-US paired sessions. The proportion of trials with a significant theta (4–10 Hz) power change, the theta/delta ratio, and theta peak frequency also increased in an age-dependent manner. Finally, spike/theta phase-locking during the CS showed an age-related increase. The findings indicate substantial developmental changes in dorsal hippocampal function that may play a role in the ontogeny of learning and memory.

<![CDATA[Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited]]>

Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state.

<![CDATA[A Comparison of Gene Expression Profiles between Glucocorticoid Responder and Non-Responder Bovine Trabecular Meshwork Cells Using RNA Sequencing]]>

The most common ocular side effect of glucocorticoid (GC) therapy is GC-induced ocular hypertension (OHT) and GC-induced glaucoma (GIG). GC-induced OHT occurs in about 40% of the general population, while the other 60% are resistant. This study aims to determine the genes and pathways involved in differential GC responsiveness in the trabecular meshwork (TM). Using paired bovine eyes, one eye was perfusion-cultured with 100nM dexamethasone (DEX), while the fellow eye was used to establish a bovine TM (BTM) cell strain. Based on maximum IOP change in the perfused eye, the BTM cell strain was identified as a DEX-responder or non-responder strain. Three responder and three non-responder BTM cell strains were cultured, treated with 0.1% ethanol or 100nM DEX for 7 days. RNA and proteins were extracted for RNA sequencing (RNAseq), qPCR, and Western immunoblotting (WB), respectively. Data were analyzed using the human and bovine genome databases as well as Tophat2 software. Genes were grouped and compared using Student’s t-test. We found that DEX induced fibronectin expression in responder BTM cells but not in non-responder cells using WB. RNAseq showed between 93 and 606 differentially expressed genes in different expression groups between responder and non-responder BTM cells. The data generated by RNAseq were validated using qPCR. Pathway analyses showed 35 pathways associated with differentially expressed genes. These genes and pathways may play important roles in GC-induced OHT and will help us to better understand differential ocular responsiveness to GCs.

<![CDATA[Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats]]>

The medial prefrontal cortex (mPFC) plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL) and infralimbic (IL) subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS) preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context) where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition). This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both associative and nonassociative stimuli that regulate conditioned fear.

<![CDATA[The Role of the Lateral Habenula in Punishment]]>

The lateral habenula (LHb) is a small epithalamic structure that projects via the fasciculus retroflexus to the midbrain. The LHb is known to modulate midbrain dopamine (DA) neurons, including inhibition of ventral tegmental area (VTA) neurons via glutamatergic excitation of the GABAergic rostromedial tegmental nucleus (RMTg). A variety of lines of evidence show activity in LHb and the LHb-RMTg pathway is correlated with, and is sufficient to support, punishment learning. However, it is not immediately clear whether LHb is necessary for punishment. Here we used a within-subjects punishment task to assess the role of LHb in the acquisition and expression of punishment as well as in aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of an AMPA receptor antagonist (NBQX) into LHb had no effect on the acquisition or expression of this punishment, or on aversive choice, but did increase locomotion. Infusion of the sodium channel blocker bupivacaine likewise had no effect on expression of punishment. However, infusion of the calcium channel blocker mibefradil did affect expression of punishment by significantly decreasing the latency with which rats responded on the punished lever and significantly increasing unpunished lever-pressing. Taken together, these findings indicate that the LHb plays a limited role in punishment, influencing only latency to respond. This role is linked to calcium channel permeability and not AMPA receptor or sodium channel permeability.

<![CDATA[Intergroup Contact and Outgroup Humanization: Is the Causal Relationship Uni- or Bidirectional?]]>

The attribution of uniquely human characteristics to the outgroup may favor the search for contact with outgroup members and, vice versa, contact experiences may improve humanity attributions to the outgroup. To explore this bidirectional relationship, two studies were performed. In Study 1, humanity perceptions were manipulated using subliminal conditioning. Two experimental conditions were created. In the humanization condition, the unconditioned stimuli (US) were uniquely human words; in the dehumanization condition, the US were non-uniquely human and animal words. In both conditions, conditioned stimuli were typical outgroup faces. An approach/avoidance technique (the manikin task) was used to measure the willingness to have contact with outgroup members. Findings showed that in the humanization condition participants were faster in approaching than in avoiding outgroup members: closeness to the outgroup was preferred to distance. Latencies of approach and avoidance movements were not different in the dehumanization condition. In Study 2, contact was manipulated using the manikin task. One approach (contact) condition and two control conditions were created. The attribution of uniquely human traits to the outgroup was stronger in the contact than in the no-contact conditions. Furthermore, the effect of contact on humanity attributions was mediated by increased trust toward the outgroup. Thus, findings demonstrate the bidirectionality of the relationship between contact and humanity attributions. Practical implications of findings are discussed.

<![CDATA[Assessment of Homonymous Recurrent Inhibition during Voluntary Contraction by Conditioning Nerve Stimulation]]>

In humans, the amount of spinal homonymous recurrent inhibition during voluntary contraction is usually assessed by using a peripheral nerve stimulation paradigm. This method consists of conditioning the maximal M-wave (SM stimulus) with prior reflex stimulation (S1), with 10 ms inter-stimulus interval (ISI). The decrease observed between unconditioned (S1 only) and conditioned (S1+SM) reflex size is then attributed to recurrent inhibition. However, during a voluntary contraction, a superimposed SM stimulation leads to a maximal M-wave followed by a voluntary (V) wave at similar latency than the H-reflex. This wave can therefore interfere with the conditioned H-reflex when two different stimulation intensities are used (S1 and SM), leading to misinterpretation of the data. The aim of the present study was to assess if conditioning V-wave response instead of H-reflex, by applying SM for both stimuli (test and conditioning), can be used as an index of recurrent inhibition. Conditioned and unconditioned responses of soleus and medial gastrocnemius muscles were recorded in twelve subjects at 25% and at 50% of maximal voluntary contraction at the usual ISI of 10 ms and an optimal inter-stimulus of 15 ms determined upon M- and V-wave latencies. Conditioned H-reflex (obtained with S1+SM paradigm) was significantly lower than the unconditioned by ~30% on average, meaning that the amount of inhibition was 70%. This amount of recurrent inhibition was significantly lower at higher force level with both methods. Regardless of the level of force or the conditioning ISI, results obtained with V-wave conditioning (SM+SM) were similar at both force levels, linearly correlated and proportional to those obtained with H conditioning. Then, V-wave conditioning appears to be a reliable index of homonymous recurrent inhibition during voluntary contraction.

<![CDATA[Involvement of GluD2 in Fear-Conditioned Bradycardia in Mice]]>

Lesions in the cerebellar vermis abolish acquisition of fear-conditioned bradycardia in animals and human patients. The δ2 glutamate receptor (GluD2) is predominantly expressed in cerebellar Purkinje cells. The mouse mutant ho15J carries a spontaneous mutation in GluD2 and these mice show a primary deficiency in parallel fiber-Purkinje cell synapses, multiple innervations of Purkinje cells by climbing fibers, and impairment of long-term depression. In the present study, we used ho15J mice to investigate the role of the cerebellum in fear-conditioned bradycardia. We recorded changes in heart rate of ho15J mice induced by repeated pairing of an acoustic (conditioned) stimulus (CS) with an aversive (unconditioned) stimulus (US). The mice acquired conditioned bradycardia on Day 1 of the CS-US phase, similarly to wild-type mice. However, the magnitude of the conditioned bradycardia was not stable in the mutant mice, but rather was exaggerated on Days 2–5 of the CS-US phase. We examined the effects of reversibly inactivating the cerebellum by injection of an antagonist against the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR). The antagonist abolished expression of conditioned responses in both wild-type and ho15J mice. We conclude that the GluD2 mutation in the ho15J mice affects stable retention of the acquired conditioned bradycardia.

<![CDATA[Noseband Use in Equestrian Sports – An International Study]]>

Nosebands are used by riders to prevent the horse from opening its mouth, to increase control and, in some cases, to comply with the competition rules. While equestrian texts traditionally recommend that two adult human fingers should be able to fit under a fastened noseband, noseband tightness levels are not, in general, regulated in competition. Possible detrimental consequences for the horse, of excessively tight nosebands, include discomfort, pain or tissue damage. The current study investigated noseband usage in equestrian competition. Data regarding noseband type, position, width and tightness were collected from 750 horses in eventing (n = 354), dressage (n = 334) and performance hunter (n = 62) competitions in Ireland, England and Belgium. Data were collected immediately before or after the performance. Using the ISES taper gauge as a guide, results were classified according to the number of ‘fingers’ that could fit under the noseband at the nasal planum, and assigned to six groups: greater than 2 fingers; 2 fingers; 1.5 fingers; 1 finger; 0.5 fingers; zero fingers. A calliper was used to measure noseband width and position relative to the facial crest. The data were not normally distributed so Kruskall-Wallis and Mann-Whitney tests were used. In all, 44% of horses fell into the zero fingers classification while only 7% were in the two fingers classification. Significant differences emerged between disciplines (p<0.001), with the highest levels of noseband tightness measured among eventers followed by dressage horses with lowest levels among performance hunters. Noseband tightness did not differ significantly with horse age (p>0.05), which ranged from 4 to 19 years. The flash noseband was the most commonly used noseband (n = 326) and was significantly tighter than the cavesson (p < 0.001), drop noseband (p < 0.001) and the Micklem (p < 0.005). Noseband width ranged from 10 to 50 mm. Noseband position varied widely with the distance between the facial crest and upper noseband margin ranging from 0 to 70 mm. The high proportion of very tight nosebands found in this study raises concerns regarding the short and long term behavioural and physiological consequences of such tight nosebands are for the horse. Although these data are currently lacking, the findings are of concern.

<![CDATA[What Is Going On Around Here? Intolerance of Uncertainty Predicts Threat Generalization]]>

Attending to stimuli that share perceptual similarity to learned threats is an adaptive strategy. However, prolonged threat generalization to cues signalling safety is considered a core feature of pathological anxiety. One potential factor that may sustain over-generalization is sensitivity to future threat uncertainty. To assess the extent to which Intolerance of Uncertainty (IU) predicts threat generalization, we recorded skin conductance in 54 healthy participants during an associative learning paradigm, where threat and safety cues varied in perceptual similarity. Lower IU was associated with stronger discrimination between threat and safety cues during acquisition and extinction. Higher IU, however, was associated with generalized responding to threat and safety cues during acquisition, and delayed discrimination between threat and safety cues during extinction. These results were specific to IU, over and above other measures of anxious disposition. These findings highlight: (1) a critical role of uncertainty-based mechanisms in threat generalization, and (2) IU as a potential risk factor for anxiety disorder development.

<![CDATA[C-type allatostatins mimic stress-related effects of alarm pheromone on honey bee learning and memory recall]]>

As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.

<![CDATA[Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance]]>

Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs’ greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

<![CDATA[Experimental Evidence of Classical Conditioning and Microscopic Engrams in an Electroconductive Material]]>

Synthetic experimental substrates are indispensable tools which can allow researchers to model biological processes non-invasively in three-dimensional space. In this study, we investigated the capacities of an electroconductive material whose properties converge upon those of the brain. An electrically conductive material composed of carbohydrates, proteins, fats, ions, water, and trace amounts of other organic compounds and minerals was classically conditioned as inferred by electrophysiological measurements. Spectral densities evoked during the display of a conditioned stimulus (CS) probe were strongly congruent with those displayed during the conditioned-unconditioned stimulus pairing (CS-UCS). The neutral stimulus consisted of the pulsed light from a LED. The unconditioned stimulus was an alternating current. Interstimulus intervals >130 ms did not result in conditioned responses. Microscopic analysis of the chemically-fixed substratum revealed 10–200 μm wide ‘vessel structures’ within samples exposed to a stimulus. Greater complexity (increased fractal dimensions) was clearly discernable by light microscopy for stained sections of fixed samples that had been conditioned compared to various controls. The denser pixels indicated greater concentration of stain and increased canalization. Implications for learning and memory formation are discussed.

<![CDATA[Corticospinal excitability measurements using transcranial magnetic stimulation are valid with intramuscular electromyography]]>


Muscular targets that are deep or inaccessible to surface electromyography (sEMG) require intrinsic recording using fine-wire electromyography (fEMG). It is unknown if fEMG validly record cortically evoked muscle responses compared to sEMG. The purpose of this investigation was to establish the validity and agreement of fEMG compared to sEMG to quantify typical transcranial magnetic stimulation (TMS) measures pre and post repetitive TMS (rTMS). The hypotheses were that fEMG would demonstrate excellent validity and agreement compared with sEMG.

Materials and methods

In ten healthy volunteers, paired pulse and cortical silent period (CSP) TMS measures were collected before and after 1200 pulses of 1Hz rTMS to the motor cortex. Data were simultaneously recorded with sEMG and fEMG in the first dorsal interosseous. Concurrent validity (r and rho) and agreement (Tukey mean-difference) were calculated.


fEMG quantified corticospinal excitability with good to excellent validity compared to sEMG data at both pretest (r = 0.77–0.97) and posttest (r = 0.83–0.92). Pairwise comparisons indicated no difference between sEMG and fEMG for all outcomes; however, Tukey mean-difference plots display increased variance and questionable agreement for paired pulse outcomes. CSP displayed the highest estimates of validity and agreement. Paired pulse MEP responses recorded with fEMG displayed reduced validity, agreement and less sensitivity to changes in MEP amplitude compared to sEMG. Change scores following rTMS were not significantly different between sEMG and fEMG.


fEMG electrodes are a valid means to measure CSP and paired pulse MEP responses. CSP displays the highest validity estimates, while caution is warranted when assessing paired pulse responses with fEMG. Corticospinal excitability and neuromodulatory aftereffects from rTMS may be assessed using fEMG.

<![CDATA[Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice]]>

We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning.

<![CDATA[Establishment and transfer of classical eyeblink conditioning using electrical microstimulation of the hippocampus as the conditioned stimulus]]>

The present experiment was designed to determine whether classical eyeblink conditioning (EBC) can be established by using electrical microstimulation of the hippocampus as a conditioned stimulus (CS) paired with an air-puff unconditioned stimulus (US). We intended to examine whether EBC transfer could occur when a CS was shifted between microstimulation of the hippocampus as a CS (Hip-CS) and tone as a CS (tone-CS) and to compare the difference in transfer effectiveness between delay EBC (dEBC) and trace EBC (tEBC). Eight groups of guinea pigs, including 4 experimental groups and 4 control groups, were included in the study. First, the experimental groups received either a Hip-CS or a tone-CS paired with a US; then, these groups were exposed to a shifted CS (tone-CS or Hip-CS) paired with the US. The control groups received the corresponding Hip-CS or tone-CS, which was, however, pseudo-paired with the US. The control groups were then shifted to the tone-CS (or Hip-CS) paired with the US. The results show that EBC can be successfully established when using microstimulation of the hippocampus as a CS paired with an air-puff US, and that the acquisition rates of EBC are higher in the experimental groups than in the control groups after switching from the Hip-CS to the tone-CS or vice versa, indicating the occurrence of learning transfer between EBC established with the Hip-CS and tone-CS. The present study also demonstrated that the EBC re-acquisition rates were remarkably higher in dEBC than in tEBC with both types of transfer, which suggests that the saving effect was more evident in dEBC than tEBC. These results significantly expand our knowledge of EBC transfer as well as the functional neural circuit underlying EBC transfer.

<![CDATA[Optimising Extinction of Conditioned Disgust]]>

Maladaptive disgust responses are tenacious and resistant to exposure-based interventions. In a similar vein, laboratory studies have shown that conditioned disgust is relatively insensitive to Conditioned Stimulus (CS)-only extinction procedures. The relatively strong resistance to extinction might be explained by disgust’s adaptive function to motivate avoidance from contamination threats (pathogens) that cannot be readily detected and are invisible to the naked eye. Therefore, the mere visual presentation of unreinforced disgust eliciting stimuli might not be sufficient to correct a previously acquired threat value of the CS+. Following this, the current study tested whether the efficacy of CS-only exposure can be improved by providing additional safety information about the CS+. For the CSs we included two neutral items a pea soup and a sausage roll, whereas for the Unconditioned Stimulus (US) we used one video clip of a woman vomiting and a neutral one about glass blowing. The additional safety information was conveyed by allowing actual contact with the CS+ or by observing an actress eating the food items representing the CS+. When additional safety information was provided via allowing direct contact with the CS+, there was a relatively strong post-extinction increase in participants’ willingness-to-eat the CS+. This beneficial effect was still evident at one-week follow up. Also self-reported disgust was lower at one-week follow up when additional safety information was provided. The current findings help explain why disgust is relatively insensitive to CS-only extinction procedures, and provide helpful starting points to improve interventions that are aimed to reduce distress in disgust-related psychopathology.

<![CDATA[The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri]]>

Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.