ResearchPad - congenital-disorders https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Ultrasound prediction of Zika virus-associated congenital injury using the profile of fetal growth]]> https://www.researchpad.co/article/elastic_article_13878 Zika virus (ZIKV) is a mosquito-transmitted flavivirus, recently linked to microcephaly and central nervous system anomalies following infection in pregnancy. Striking findings of disproportionate growth with a smaller than expected head relative to body length have been observed more commonly among fetuses with exposure to ZIKV in utero compared to pregnancies without ZIKV infection regardless of other signs of congenital infection including microcephaly. This study’s objective was to determine the diagnostic accuracy of femur-sparing profile of intrauterine growth restriction for the identification of ZIKV-associated congenital injuries on postnatal testing. A retrospective cohort study of pregnant women with possible or confirmed ZIKV infection between January 1, 2016 and December 31, 2017 were included. Subjects were excluded if no prenatal ultrasound was available. A femur-sparing profile of growth restriction determined using INTERGROWTH-21st sonographic standard for head circumference to femur length (HC: FL). Congenital injuries were determined postnatally by imaging, comprehensive eye exam and standard newborn hearing screen. A total of 111 pregnant women diagnosed with ZIKV infection underwent fetal ultrasound and 95 neonates had complete postnatal evaluation. Prenatal microcephaly was detected in 5% of fetuses (6/111). Postnatal testing detected ZIKV-associated congenital injuries in 25% of neonates (24/95). A HC: FL Z-score ≤ -1.3 had a 52% specificity (95% CI 41–63%), 82% negative predictive value (NPV, 95% CI 73–88%) for the detection of ZIKV-associated congenital injuries in the neonatal period. A more stringent threshold with a Z-score ≤ -2 was associated with a 90% specificity (95% CI 81–95%), 81% NPV (95% CI 77–85%). Excluding cases of fetal microcephaly, HC: FL (Z-score ≤ -2) demonstrated a similar specificity (89%, 95% CI 81–95%) with superior NPV (87%, 95% CI 84–90%). The sonographic recognition of a normally proportioned fetus may be useful prenatally to exclude a wider spectrum of ZIKV-associated congenital injuries detected postnatally.

]]>
<![CDATA[New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data]]> https://www.researchpad.co/article/elastic_article_7754 The mandatory reporting of the Zika virus (ZIKV) disease began region-wide in February 2016, and it is believed that ZIKV cases could have been highly under-reported before that. Given the Guillain-Barré syndrome (GBS) is relatively well reported, the GBS surveillance data has the potential to act as a reasonably reliable proxy for inferring the true ZIKV epidemics. We developed a mathematical model incorporating weather effects to study the ZIKV-GBS epidemics and estimated the key epidemiological parameters. It was found that the attack rate of ZIKV was likely to be lower than 33% over the two epidemic waves. The risk rate from symptomatic ZIKV case to develop GBS was estimated to be approximately 0.0061%. The analysis suggests that it would be difficult for another ZIKV outbreak to appear in Northeastern Brazil in the near future.

]]>
<![CDATA[Micro-RNA signatures in monozygotic twins discordant for congenital heart defects]]> https://www.researchpad.co/article/N5a7c737e-22cf-4de0-b5e8-861cb3f8f58f

Background

MicroRNAs (miRNAs) are small RNAs regulating gene expression post-transcriptionally. Recent studies demonstrated that miRNAs are involved in the development of congenital heart defects (CHD). In this study, we aimed at identifying the specific patterns of miRNAs in blood of monozygotic twin pairs discordant for CHD and to assess whether miRNAs might be involved in the development or reflect the consequences of CHD.

Methods

miRNA microarray analysis and Real-Time Quantitative PCR (RT-qPCR) were employed to determine the miRNA abundance level from 12 monozygotic twins discordant for CHD and their non-CHD co-twins (n = 12). Enrichment analyses of altered miRNAs were performed using bioinformatics tools.

Results

Compared with non-CHD co-twins, profiling analysis indicated 34 miRNAs with a significant difference in abundance level (p<0.05, fold change ≥ 1.3), of which 11 miRNAs were up-regulated and 23 miRNAs were down-regulated. Seven miRNAs were validated with RT-qPCR including miR-511-3p, miR-1306-5p, miR-421, miR-4707-3p, miR-4732-3p, miR-5189-3p, and miR-890, and the results were consistent with microarray analysis. Five miRNAs namely miR-511-3p, miR-1306-5p, miR-4732-3p, miR-5189-3p, and miR-890 were found to be significantly up-regulated in twins < 10 years old. Bioinformatics analysis showed that the 7 validated miRNAs were involved in phosphatidylinositol signaling, gap junction signaling, and adrenergic signaling in cardiomyocytes.

Conclusions

Our data show deregulated miRNA abundance levels in the peripheral blood of monozygotic twins discordant for CHD, and identify new candidates for further analysis, which may contribute to understanding the development of CHD in the future. Bioinformatics analysis indicated that the target genes of these miRNAs are likely involved in signaling and communication of cardiomyocytes.

]]>
<![CDATA[Furin, a transcriptional target of NKX2-5, has an essential role in heart development and function]]> https://www.researchpad.co/article/5c897793d5eed0c4847d307a

The homeodomain transcription factor NKX2-5 is known to be essential for both normal heart development and for heart function. But little is yet known about the identities of its downstream effectors or their function during differentiation of cardiac progenitor cells (CPCs). We have used transgenic analysis and CRISPR-mediated ablation to identify a cardiac enhancer of the Furin gene. The Furin gene, encoding a proprotein convertase, is directly repressed by NKX2-5. Deletion of Furin in CPCs is embryonic lethal, with mutant hearts showing a range of abnormalities in the outflow tract. Those defects are associated with a reduction in proliferation and premature differentiation of the CPCs. Deletion of Furin in differentiated cardiomyocytes results in viable adult mutant mice showing an elongation of the PR interval, a phenotype that is consistent with the phenotype of mice and human mutant for Nkx2-5. Our results show that Furin mediate some aspects of Nkx2-5 function in the heart.

]]>
<![CDATA[The association between Zika virus infection and microcephaly in Brazil 2015–2017: An observational analysis of over 4 million births]]> https://www.researchpad.co/article/5c882414d5eed0c484639707

Background

In 2015, high rates of microcephaly were reported in Northeast Brazil following the first South American Zika virus (ZIKV) outbreak. Reported microcephaly rates in other Zika-affected areas were significantly lower, suggesting alternate causes or the involvement of arboviral cofactors in exacerbating microcephaly rates.

Methods and findings

We merged data from multiple national reporting databases in Brazil to estimate exposure to 9 known or hypothesized causes of microcephaly for every pregnancy nationwide since the beginning of the ZIKV outbreak; this generated between 3.6 and 5.4 million cases (depending on analysis) over the time period 1 January 2015–23 May 2017. The association between ZIKV and microcephaly was statistically tested against models with alternative causes or with effect modifiers. We found no evidence for alternative non-ZIKV causes of the 2015–2017 microcephaly outbreak, nor that concurrent exposure to arbovirus infection or vaccination modified risk. We estimate an absolute risk of microcephaly of 40.8 (95% CI 34.2–49.3) per 10,000 births and a relative risk of 16.8 (95% CI 3.2–369.1) given ZIKV infection in the first or second trimester of pregnancy; however, because ZIKV infection rates were highly variable, most pregnant women in Brazil during the ZIKV outbreak will have been subject to lower risk levels. Statistically significant associations of ZIKV with other birth defects were also detected, but at lower relative risks than that of microcephaly (relative risk < 1.5). Our analysis was limited by missing data prior to the establishment of nationwide ZIKV surveillance, and its findings may be affected by unmeasured confounding causes of microcephaly not available in routinely collected surveillance data.

Conclusions

This study strengthens the evidence that congenital ZIKV infection, particularly in the first 2 trimesters of pregnancy, is associated with microcephaly and less frequently with other birth defects. The finding of no alternative causes for geographic differences in microcephaly rate leads us to hypothesize that the Northeast region was disproportionately affected by this Zika outbreak, with 94% of an estimated 8.5 million total cases occurring in this region, suggesting a need for seroprevalence surveys to determine the underlying reason.

]]>
<![CDATA[Depression and anxiety in patients with different rare chronic diseases: A cross-sectional study]]> https://www.researchpad.co/article/5c76fe74d5eed0c484e5bab4

Objective

Empirical evidence on depression and anxiety in patients with rare diseases is scarce but can help improve comprehensive treatment. The objectives of this study were to investigate the frequency of depression and anxiety in this heterogeneous population and to examine aspects associated with increased psychopathology.

Methods

N = 300 patients with 79 different rare diseases (female:80%, age:M = 44.3(12.8), range:16–74 years) participated in a cross-sectional online study. We determined the percentages of patients reporting elevated depression (PHQ-9) and anxiety (GAD-7) scores. We calculated two linear regressions with depression and anxiety as outcomes. Predictor variables were diagnosis-related aspects (diagnosis assigned to ICD-10 chapter, visibility of symptoms, time since diagnosis, comorbid diseases), perceived somatic-symptom-severity (PHQ-15), illness-perceptions (consequences, control, identity, concern, understanding and treatment control; B-IPQ-R), coping mechanisms (constructive attitudes, active engagement in life) and social support (heiQ). We controlled for gender, age and depression or anxiety depending on the outcome.

Results

42% of the patients (95%CI [36.41%,47.59%]) reported depression scores indicating moderately or severely elevated symptom levels. Regarding anxiety, this applies to 23% (95%CI [18.54%,28.06%]). Variables significantly associated with depression were higher perceived somatic-symptom-severity (B = 0.41,p < .001), less control (B = .17,p < .05), lower levels of concern (B = -0.32,p < .01) and less constructive attitudes (B = -1.40,p < .001). No diagnosis-related variables were associated with depression. Variables significantly associated with anxiety were diseases of the circulatory system compared to congenital malformations (B = 1.88,p < .05), less consequences (B = -0.32,p < .05) and more concern (B = -0.32,p < .01).

Conclusion

The data reveal first insights into depression and anxiety in patients with different rare diseases. High percentages of patients showed clinically relevant symptom burden. No diagnosis-related differences were found in depression while anxiety seems to be particularly frequent in patients with rare diseases of the circulatory system. Besides perceived somatic symptom severity, cognitive appraisal seems to be linked to depression. Supporting patients in coping with their disease may help reduce psychopathology and therefore improve overall health.

]]>
<![CDATA[De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders]]> https://www.researchpad.co/article/5c181392d5eed0c484775435

Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied by other congenital anomalies. Previous exome sequencing studies for CDH have supported a role of de novo damaging variants but did not identify any recurrently mutated genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in 362 proband-parent trios including 271 new trios reported in this study. We identified four unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10-8), including one likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight additional individuals with de novo LGD or missense variants were identified from our other genetic studies or from the literature. Common phenotypes of MYRF de novo variant carriers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that it represents a novel syndrome. MYRF is a membrane associated transcriptional factor highly expressed in developing diaphragm and is depleted of LGD variants in the general population. All de novo missense variants aggregated in two functional protein domains. Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that disease associated variants abolish the transcription factor activity. Furthermore, we showed that the remaining genes with damaging variants in CDH significantly overlap with genes implicated in other developmental disorders. Gene expression patterns and patient phenotypes support pleiotropic effects of damaging variants in these genes on CDH and other developmental disorders. Finally, functional enrichment analysis implicates the disruption of regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton organization as pathogenic mechanisms in CDH.

]]>
<![CDATA[Potential inconsistencies in Zika surveillance data and our understanding of risk during pregnancy]]> https://www.researchpad.co/article/5c1813a1d5eed0c48477565b

Background

A significant increase in microcephaly incidence was reported in Northeast Brazil at the end of 2015, which has since been attributed to an epidemic of Zika virus (ZIKV) infections earlier that year. Further incidence of congenital Zika syndrome (CZS) was expected following waves of ZIKV infection throughout Latin America; however, only modest increases in microcephaly and CZS incidence have since been observed. The quantitative relationship between ZIKV infection, gestational age and congenital outcome remains poorly understood.

Methodology/Principle findings

We characterised the gestational-age-varying risk of microcephaly given ZIKV infection using publicly available incidence data from multiple locations in Brazil and Colombia. We found that the relative timings and shapes of ZIKV infection and microcephaly incidence curves suggested different gestational risk profiles for different locations, varying in both the duration and magnitude of gestational risk. Data from Northeast Brazil suggested a narrow window of risk during the first trimester, whereas data from Colombia suggested persistent risk throughout pregnancy. We then used the model to estimate which combination of behavioural and reporting changes would have been sufficient to explain the absence of a second microcephaly incidence wave in Bahia, Brazil; a population for which we had two years of data. We found that a 18.9-fold increase in ZIKV infection reporting rate was consistent with observed patterns.

Conclusions

Our study illustrates how surveillance data may be used in principle to answer key questions in the absence of directed epidemiological studies. However, in this case, we suggest that currently available surveillance data are insufficient to accurately estimate the gestational-age-varying risk of microcephaly from ZIKV infection. The methods used here may be of use in future outbreaks and may help to inform improved surveillance and interpretation in countries yet to experience an outbreak of ZIKV infection.

]]>
<![CDATA[Comparative transcriptome analysis provides insights into dwarfism in cherry tomato (Solanum lycopersicum var. cerasiforme)]]> https://www.researchpad.co/article/5c141ef4d5eed0c484d28ff7

Tomato, which can be eaten as a vegetable or fruit, is one of the most popular and nutritionally important crops around the world. Although most plants of the cherry tomato cultivar ‘Minichal’ have a normal phenotype, some plants have a stunted phenotype with reduced plant height, leaf size, and fruit size, as well as altered leaf and fruit shape. To investigate the molecular mechanisms underlying these differences, we generated RNA-seq libraries from pooled leaf samples of 10 normal (N) and 10 stunted (S) plants. Using the Illumina sequencing platform, we obtained a total of 115.45 million high-quality clean reads assembled into 35,216 genes and 35,216 transcripts. A total of 661 genes were differentially expressed between N and S plants. Of these, 420 differentially expressed genes (DEGs) were up-regulated, and 221 DEGs were down-regulated. The RNA-seq data were validated using quantitative reverse-transcription PCR. Enrichment analysis of DEGs using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the enriched pathways were involved in steroid biosynthesis, homologous recombination, and mismatch repair. Among these, three genes related to steroid biosynthesis, including 3BETAHSD/D2, DIM and DWF5 were down-regulated in S compared to N. Of these, DIM and DWF5 are known to be involved in brassinosteroid biosynthesis. Our results thus provide a useful insight into dwarfism in cherry tomato, and offer a platform for evaluating related species.

]]>
<![CDATA[Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity]]> https://www.researchpad.co/article/5bff05fdd5eed0c484a340dc

Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.

]]>
<![CDATA[Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability]]> https://www.researchpad.co/article/5c0ae474d5eed0c484589bc7

The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and environmental causes. Historically, most research has not focused on autosomal recessive ID (ARID), which is a significant cause of ID, particularly in areas where parental consanguinity is common. Identification of genetic causes allows for precision diagnosis and improved genetic counseling. We performed whole exome sequencing to 21 Turkish families, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multiple affected siblings born to unaffected parents and/or shared ancestry, we consider all families as ARID. We revealed the underlying causative variants in seven families in MCPH1 (c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAGGATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30), TUSC3 (c.793C>T, p.Q265*) and ZNF335 (c.808C>T, p.R270C and c.3715C>A, p.Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male siblings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) variant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previously published. Additionally in one family, two affected children were homozygous for the c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID. No causative variants were found in the remaining 11 families. A wide variety of variants explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.

]]>
<![CDATA[A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies]]> https://www.researchpad.co/article/5b079d4e463d7e75962e790f

Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.

]]>
<![CDATA[RBFOX1 Cooperates with MBNL1 to Control Splicing in Muscle, Including Events Altered in Myotonic Dystrophy Type 1]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b86568

With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4) genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1 tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1.

]]>
<![CDATA[Application of Prospective ECG-Gated High-Pitch 128-Slice Dual-Source CT Angiography in the Diagnosis of Congenital Extracardiac Vascular Anomalies in Infants and Children]]> https://www.researchpad.co/article/5989d9d9ab0ee8fa60b66eb7

Purpose

To investigate the value of prospective ECG-gated high-pitch 128-slice dual-source CT (DSCT) angiography in the diagnosis of congenital extracardiac vascular anomalies in infants and children in comparison with transthoracic echocardiography (TTE).

Methods

Eighty consecutive infants or children clinically diagnosed of congenital heart disease and suspected with extracardiac vascular anomaly were enrolled, and 75 patients were finally included in this prospective study. All patients underwent prospective ECG-gated high-pitch DSCT angiography after TTE with an interval of 1–7 days. The diagnostic accuracy and sensitivity of high-pitch DSCT angiography and TTE were compared according to the surgical/CCA findings. The image quality of DSCT was assessed using a five-point scale. The effective radiation dose (ED) was calculated.

Results

A total of 17 congenital heart diseases and 162 separate extracardiac vascular anomalies were confirmed by surgical/CCA findings in 75 patients. The diagnostic accuracy of high-pitch DSCT angiography and TTE was 99.67% and 97.89%, respectively. The sensitivity of high-pitch DSCT angiography and TTE was 97.53% and 79.62%, respectively. There was significant difference regarding to the diagnostic accuracy and the sensitivity between high-pitch DSCT angiography and TTE (χ2 = 23.561 and 28.013, P<0.05). The agreement on the image quality scoring of DSCT between the two observers was excellent (κ = 0.81), and the mean score of image quality was 4.1±0.7. The mean ED of DSCT was 0.29±0.08 mSv.

Conclusions

Prospective ECG-gated high-pitch 128-slice DSCT angiography with low radiation dose and high diagnostic accuracy has higher sensitivity compared to TTE in the detection of congenital extracardiac vascular anomalies in infants and children.

]]>
<![CDATA[Perinatal Natural History of the Ts1Cje Mouse Model of Down Syndrome: Growth Restriction, Early Mortality, Heart Defects, and Delayed Development]]> https://www.researchpad.co/article/5989da27ab0ee8fa60b813d9

Background

The Ts1Cje model of Down syndrome is of particular interest for perinatal studies because affected males are fertile. This permits affected pups to be carried in wild-type females, which is similar to human pregnancies. Here we describe the early natural history and growth profiles of Ts1Cje embryos and neonates and determine if heart defects are present in this strain.

Methods

Pups were studied either on embryonic (E) day 15.5, or from postnatal (P) day 3 through weaning on P21. PCR amplification targeting the neomycin cassette (present in Ts1Cje) and Sry (present in males) was used to analyze pup genotypes and sex ratios. Body weights and lengths, as well as developmental milestones, were recorded in Ts1Cje mice and compared to their wild-type (WT) littermates. Histological evaluations were performed at E15.5 to investigate the presence or absence of heart defects. Pups were divided into two groups: Ts1Cje-I pups survived past weaning and Ts1Cje-II pups died at some point before P21.

Results

Ts1Cje mouse embryos showed expected Mendelian ratios (45.8%, n = 66 for Ts1Cje embryos; 54.2%, n = 78 for WT embryos). Histological analysis revealed the presence of ventricular septal defects (VSDs) in 21% of Ts1Cje E15.5 embryos. After weaning, only 28.2% of pups were Ts1Cje (185 Ts1Cje out of 656 total pups generated), with males predominating (male:female ratio of 1.4:1). Among the recovered dead pups (n = 207), Ts1Cje (63.3%, n = 131, p<0.01) genotype was found significantly more often than WT (36.7%, n = 76). Retrospective analysis of Ts1Cje-II (pre-weaning deceased) pups showed that they were growth restricted compared to Ts1Cje-I pups (post-weaning survivors). Growth restriction correlated with statistically significant delays in achieving several neonatal milestones between P3 and P21 compared to Ts1Cje-I (post-weaning survivors) neonates and WT littermates.

Conclusions

Ts1Cje genotype is not associated with increased early in utero mortality. Cardiac defects, specifically VSDs, are part of the phenotype in this strain. There is increased neonatal mortality in Ts1Cje pups, with sex differences observed. Ts1Cje mice that died in the neonatal period were more likely to be growth restricted and delayed in achieving neonatal developmental milestones.

]]>
<![CDATA[Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene]]> https://www.researchpad.co/article/5989da70ab0ee8fa60b94768

Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions.

]]>
<![CDATA[Abrupt Onset of Mutations in a Developmentally Regulated Gene during Terminal Differentiation of Post-Mitotic Photoreceptor Neurons in Mice]]> https://www.researchpad.co/article/5989db40ab0ee8fa60bd666e

For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X), cDNA encoding the enhanced green fluorescent protein (EGFP) at its 3′ end, and a modified 5′ untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP), which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.

]]>
<![CDATA[Preventing Zika Virus Infection during Pregnancy Using a Seasonal Window of Opportunity for Conception]]> https://www.researchpad.co/article/5989dae4ab0ee8fa60bbcfa8

It has come to light that Zika virus (ZIKV) infection during pregnancy can result in trans-placental transmission to the fetus along with fetal death, congenital microcephaly, and/or Central Nervous System (CNS) malformations. There are projected to be >9,200,000 births annually in countries with ongoing ZIKV transmission. In response to the ZIKV threat, the World Health Organization (WHO) is strategically targeting prevention of infection in pregnant women and funding contraception in epidemic regions. I propose that the damaging effects of ZIKV can be reduced using a seasonal window of opportunity for conception that may minimize maternal exposure. Like other acute viral infections—including the related flavivirus, dengue virus (DENV)—the transmission of ZIKV is anticipated to be seasonal. By seasonally planning pregnancy, this aspect of pathogen ecology can be leveraged to align sensitive periods of gestation with the low-transmission season.

]]>
<![CDATA[The Hole and the Whole: Lessons from Manipulation of Nipbl Deficiency]]> https://www.researchpad.co/article/5989da1dab0ee8fa60b7d70e

Congenital heart defects (CHDs) affect 2%–3% of newborns and remain challenging clinically. There is an ongoing project to elucidate the causes of CHDs, focusing primarily on genetics as dictated by the epidemiology. In a paper published in this issue, Santos and colleagues describe studies of Cornelia de Lange syndrome-associated secundum atrial septal defects (ASDs) caused by NIPBL mutations, undertaken with a targeted trapping allele in mice. They show that Nipbl haploinsufficiency in either of two cell populations was sufficient to engender ASDs but that expression solely in either one of those populations was sufficient to rescue them. This work provides novel insights into incomplete penetrance and oligogenic effects underlying CHDs.

]]>
<![CDATA[Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcb6a

Introduction

Hydrocephalus is a complex neurological disorder with a pervasive impact on the central nervous system. Previous work has demonstrated derangements in the biochemical profile of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom neurodevelopment is progressing in parallel with concomitant neurological injury. The objective of this study was to examine the CSF of children with congenital hydrocephalus (CHC) to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers of CHC with potential diagnostic and therapeutic value.

Methods

CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ, Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups were included: age-matched controls and children with other neurological diseases. Demographic parameters, ventricular frontal-occipital horn ratio, associated brain malformations, genetic alterations, and surgical treatments were recorded. Logistic regression analysis and receiver operating characteristic curves were used to examine the association of each CSF protein with CHC.

Results

CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects ≤12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001, AUC = 0.95), tau, APP, and L1CAM. Among subjects ≤12 months, a normalized CSF sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity = 0.94, specificity = 0.97); these infants were 32 times more likely to have CHC.

Conclusions

CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in infants and young children, and provide insight into the pathophysiology of CHC during this critical period in neurodevelopment.

]]>