ResearchPad - conservation-genetics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (<i>Xenospiza baileyi</i>)]]> https://www.researchpad.co/article/elastic_article_11235 The magnitude and distribution of genetic diversity through space and time can provide useful information relating to evolutionary potential and conservation status in threatened species. In assessing genetic diversity in species that are of conservation concern, several studies have focused on the use of Toll-like receptors (TLRs). TLRs are innate immune genes related to pathogen resistance, and polymorphisms may reflect not only levels of functional diversity, but may also be used to assess genetic diversity within and among populations. Here, we combined four potentially adaptive markers (TLRs) with one mitochondrial (COI) marker to evaluate genetic variation in the endangered Sierra Madre Sparrow (Xenospiza baileyi). This species offers an ideal model to investigate population and evolutionary genetic processes that may be occurring in a habitat restricted endangered species with disjunct populations (Mexico City and Durango), the census sizes of which differ by an order of magnitude. TLRs diversity in the Sierra Madre Sparrow was relatively high, which was not expected given its two small, geographically isolated populations. Genetic diversity was different (but not significantly so) between the two populations, with less diversity seen in the smaller Durango population. Population genetic structure between populations was due to isolation and different selective forces acting on different TLRs; population structure was also evident in COI. Reduction of genetic diversity in COI was observed over 20 years in the Durango population, a result likely caused by habitat loss, a factor which may be the main cause of diversity decline generally. Our results provide information related to the ways in which adaptive variation can be altered by demographic changes due to human-mediated habitat alterations. Furthermore, our findings may help to guide conservation schemes for both populations and their restricted habitat.

]]>
<![CDATA[Marine stepping‐stones: Connectivity of Mytilus edulis populations between offshore energy installations]]> https://www.researchpad.co/article/N19941544-b4cd-44cd-9b64-cf8e9d39302c

Abstract

Recent papers have suggested that epifaunal organisms use artificial structures as stepping‐stones to spread to areas that are too distant to reach in a single generation. With thousands of artificial structures present in the North Sea, we test the hypothesis that these structures are connected by water currents and act as an interconnected reef. Population genetic structure of the blue mussel, Mytilus edulis, was expected to follow a pattern predicted by a particle tracking model (PTM). Correlation between population genetic differentiation, based on microsatellite markers, and particle exchange was tested. Specimens of M. edulis were found at each location, although the PTM indicated that locations >85 km offshore were isolated from coastal subpopulations. The fixation coefficient F ST correlated with the number of arrivals in the PTM. However, the number of effective migrants per generation as inferred from coalescent simulations did not show a strong correlation with the arriving particles. Isolation by distance analysis showed no increase in isolation with increasing distance and we did not find clear structure among the populations. The marine stepping‐stone effect is obviously important for the distribution of M. edulis in the North Sea and it may influence ecologically comparable species in a similar way. In the absence of artificial shallow hard substrates, M. edulis would be unlikely to survive in offshore North Sea waters.

]]>
<![CDATA[Is the central‐marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L]]> https://www.researchpad.co/article/Nc4719ac0-b630-4d92-a656-7dc86e320825

Abstract

The central‐marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter‐population genetic differentiation compared to range cores. CMH predictions are based on long‐held “abundant‐centre” assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying “abundant‐centre” assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to “abundant‐centre” assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.

]]>
<![CDATA[Genomic footprints of a biological invasion: Introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva)]]> https://www.researchpad.co/article/Nacd9bd01-8ed2-4855-b118-f13497d3f080

Abstract

Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non‐native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non‐native environments could be different from native ones for which introduced individuals would be ill‐adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real‐time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD‐sequenced 301 specimens from sixteen populations and three distinct within‐catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome‐wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology.

]]>
<![CDATA[The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome]]> https://www.researchpad.co/article/N8ed88142-6689-430c-b82a-b033b4ff58ac

Sophora alopecuroides (Faboideae) is an endemic species, mainly distributed in northwest China. However, the limited molecular markers range for this species hinders breeding and genetic studies. A total of 20,324 simple sequence repeat (SSR) markers were identified from 118,197 assembled transcripts and 18 highly polymorphic SSR markers were used to explore the genetic diversity and population structure of S. alopecuroides from 23 different geographical populations. A relatively low genetic diversity was found in S. alopecuroides based on mean values of the number of effective alleles (Ne = 1.81), expected heterozygosity (He = 0.39) and observed heterozygosity (Ho = 0.55). The results of AMOVA indicated higher levels of variation within populations than between populations. Bayesian-based cluster analysis, principal coordinates analysis and Neighbor-Joining phylogeny analysis roughly divided all genotypes into four major groups with some admixtures. Meanwhile, geographic barriers would have restricted gene flow between the northern and southern regions (separated by Tianshan Mountains), wherein the two relatively ancestral and independent clusters of S. alopecuroides occur. History trade and migration along the Silk Road would together have promoted the spread of S. alopecuroides from the western to the eastern regions of the northwest plateau in China, resulting in the current genetic diversity and population structure. The transcriptomic SSR markers provide a valuable resource for understanding the genetic diversity and population structure of S. alopecuroides, and will assist effective conservation management.

]]>
<![CDATA[Loss and gain of sexual reproduction in the same stick insect]]> https://www.researchpad.co/article/N13ca5fd9-421e-4047-bde9-4df4911dae24

Abstract

The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.

]]>
<![CDATA[Regional and global shifts in crop diversity through the Anthropocene]]> https://www.researchpad.co/article/5c648ceed5eed0c484c81b0f

The Anthropocene epoch is partly defined by anthropogenic spread of crops beyond their centres of origin. At global scales, evidence indicates that species-level taxonomic diversity of crops being cultivated on large-scale agricultural lands has increased linearly over the past 50 years. Yet environmental and socio-economic differences support expectations that temporal changes in crop diversity vary across regions. Ecological theory also suggests that changes in crop taxonomic diversity may not necessarily reflect changes in the evolutionary diversity of crops. We used data from the Food and Agricultural Organization (FAO) of the United Nations to assess changes in crop taxonomic- and phylogenetic diversity across 22 subcontinental-scale regions from 1961–2014. We document certain broad consistencies across nearly all regions: i) little change in crop diversity from 1961 through to the late 1970s; followed by ii) a 10-year period of sharp diversification through the early 1980s; followed by iii) a “levelling-off” of crop diversification beginning in the early 1990s. However, the specific onset and duration of these distinct periods differs significantly across regions and are unrelated to agricultural expansion, indicating that unique policy or environmental conditions influence the crops being grown within a given region. Additionally, while the 1970s and 1980s are defined by region-scale increases in crop diversity this period marks the increasing dominance of a small number of crop species and lineages; a trend resulting in detectable increases in the similarity of crops being grown across regions. Broad similarities in the species-level taxonomic and phylogenetic diversity of crops being grown across regions, primarily at large industrial scales captured by FAO data, represent a unique feature of the Anthropocene epoch. Yet nuanced asymmetries in regional-scale trends suggest that environmental and socio-economic factors play a key role in shaping observed macro-ecological changes in the plant diversity on agricultural lands.

]]>
<![CDATA[Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China]]> https://www.researchpad.co/article/5c5df329d5eed0c484580de8

Miscanthus lutarioriparius is a native perennial Miscanthus species of China, which is currently used as raw material of papermaking and bioenergy crop. It also has been considered as a promising eco-bioindustrial plant, which can offer raw material and gene for the biomass industry. However, lack of germplasm resources and genetic diversity information of M. lutarioriparius have become the bottleneck that prevents the stable and further development of the biomass industry. In the present study, genetic diversity of 153 M. lutarioriparius individuals nine populations was studied using 27 Start Codon Targeted (SCoT) markers. High polymorphic bands (97.67%), polymorphic information content (0.26) and allele number (1.88) showed SCoT as a reliable marker system for genetic analysis in M. lutarioriparius. At the species, the percentage of polymorphic loci [PPL] was 97.2%, Nei’s gene diversity [H] was 0.36, Shannon index [I] was 0.54 and Expected Heterozygosity [He] was 0.56. Genetic variation within populations (84.91%) was higher than among populations (15.09%) based on analysis of molecular variance (AMOVA). Moderate level of genetic differentiation was found in M. lutarioriparius populations (Fst = 0.15), which is further confirmed by STRUCTURE, principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) analysis that could reveal a clear separation between groups of the north and south of Yangtze River. The gene flow of the populations within the respective south and north of Yangtze River area was higher, but lower between the areas. There was no obvious correlation between genetic distance and geographic distance. The breeding systems, geographical isolation and fragmented habitat of M. lutarioriparius may be due to the high level of genetic diversity, moderate genetic differentiation, and the population, structure. The study further suggests some measure for conservation of genetic resources and provides the genetic basis for improving the efficiency of breeding based on the results of diversity analysis.

]]>
<![CDATA[Contrasting fine-scale genetic structure of two sympatric clonal plants in an alpine swampy meadow featured by tussocks]]> https://www.researchpad.co/article/5c26973ad5eed0c48470efa2

Tussocks are unique vegetation structures in wetlands. Many tussock species mainly reproduce by clonal growth, resulting in genetically identical offspring distributed in various spatial patterns. These fine-scale patterns could influence mating patterns and thus the long-term evolution of wetland plants. Here, we contribute the first genetic and clonal structures of two key species in alpine wetlands on the Qinghai–Tibet Plateau, Kobresia tibetica and Blysmus sinocompressus, using > 5000 SNPs identified by 2b-RAD sequencing. The tussock-building species, K. tibetica, has a phalanx (clumping) growth form, but different genets could co-occur within the tussocks, indicating that it is not proper to treat a tussock as one genetic individual. Phalanx growth does not necessarily lead to increased inbreeding in K. tibetica. B. sinocompressus has a guerilla (spreading) growth form, with the largest detected clone size being 18.32 m, but genets at the local scale tend to be inbred offspring. Our results highlight that the combination of clone expansion and seedling recruitment facilitates the contemporary advantage of B. sinocompressus, but its evolutionary potential is limited by the input genetic load of the original genets. The tussocks of K. tibetica are more diverse and a valuable genetic legacy of former well-developed wet meadows, and they are worthy of conservation attention.

]]>
<![CDATA[High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal]]> https://www.researchpad.co/article/5c117b6bd5eed0c4846991ec

Asiatic black bears (Ursus thibetanus) have a widespread distribution in mountain landscapes, and are considered vulnerable globally, but are low-priority species for conservation in Nepal. Habitat fragmentation, illegal hunting, and human-bear conflict are the major threats to Asiatic black bears across their global range. Having an adequate level of genetic variation in a population helps with adapting to rapidly changing environments, and thus is important for the long-term health of bear populations. Accordingly, we conducted non-invasive surveys of bear populations in the Annapurna Conservation Area (ACA) to elucidate genetic diversity, genetic structure, and the phylogenetic relationship of Asiatic black bears from this region of Nepal to other subspecies. To assess levels of genetic diversity and population genetic structure, we genotyped eight microsatellite loci using 147 samples, identifying 60 individuals in an area of approximately 525 km2. We found that the Asiatic black bear population in the ACA has maintained high levels of genetic diversity (HE = 0.76) as compared to other bear populations from range countries. We did not detect a signature of population substructure among sampling localities and this suggests that animals are moving freely across the landscape within the ACA. We also detected a moderate population size that may increase with the availability of suitable habitat in the ACA, so bear-related conflict should be addressed to ensure the long-term viability of this expanding bear populations. Primers specific to bears were designed to amplify a 675 bp fragment of the mitochondrial control region from the collected samples. Three haplotypes were observed from the entire conservation area. The complete mitochondrial genome (16,771 bp), the first obtained from wild populations of the Himalayan black bear (U. t. laniger), was also sequenced to resolve the phylogenetic relationships of closely related subspecies of Asiatic black bears. The resulting phylogeny indicated that Himalayan black bear populations in Nepal are evolutionary distinct from other known subspecies of Asiatic black bears.

]]>
<![CDATA[Evaluation of genetic diversity among Russet potato clones and varieties from breeding programs across the United States]]> https://www.researchpad.co/article/5b6d94b9463d7e2f79286cc0

DNA fingerprinting is a powerful tool for plant diversity studies, cultivar identification, and germplasm conservation and management. In breeding programs, fingerprinting and diversity analysis provide an insight into the extent of genetic variability available in the breeding material, which in turn helps breeders to maintain a pool of highly diverse genotypes by avoiding the selection of closely related parents. Oblong-long tubers with russeting skin characterize Russet potato, a primary potato market class in the United States, and especially in the western production regions. The aim of this study was to estimate the level of genetic diversity within this market class potato, utilizing clones and varieties from various breeding programs across the United States. A collection of 264 Russet and non-Russet breeding clones and varieties was fingerprinted using 23 highly polymorphic genome-wide simple sequence repeat (SSR) markers, resulting in 142 polymorphic alleles. The number of alleles produced per SSR varied from 2 to 10, with an average of 6.2 alleles per marker. The polymorphic information content and expected heterozygosity of SSRs ranged from 0.37 to 0.89 and 0.50 to 0.89 with an average of 0.77 and 0.81, respectively. Out of these 23 markers, we propose nine SSR markers best suited for fingerprinting Russet potatoes based on polymorphic information content, heterozygosity and ease of scoring. Diversity analysis of these clones suggest that there is significant diversity across the breeding material and the diversity has been evenly distributed among all the regional breeding programs.

]]>
<![CDATA[Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa]]> https://www.researchpad.co/article/5b4a196f463d7e428027f8b4

Conservation of large carnivores, such as the African lion, requires preservation of extensive core habitat areas, linkages between them, and mitigation of human-wildlife conflict. However, there are few rigorous examples of efforts that prioritized conservation actions for all three of these critical components. We used an empirically optimized resistance surface to calculate resistant kernel and factorial least cost path predictions of population connectivity and conflict risk for lions across the Kavango-Zambezi Transfrontier Conservation Area (KAZA) and surrounding landscape. We mapped and ranked the relative importance of (1) lion dispersal areas outside National Parks, (2) corridors between the key areas, and (3) areas of highest human-lion conflict risk. Spatial prioritization of conservation actions is critical given extensive land use redesignations that are reducing the extent and increasing the fragmentation of lion populations. While our example focuses on lions in southern Africa, it provides a general approach for rigorous, empirically based comprehensive conservation planning based on spatial prioritization.

]]>
<![CDATA[Retraction: A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species]]> https://www.researchpad.co/article/5b0436a6463d7e0f0e6b97b1 ]]> <![CDATA[Evaluating β Diversity as a Surrogate for Species Representation at Fine Scale]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6aa31

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and 1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently represent species at finer scale (sites sizes < 1 ha to 625 km2). We used ordinations to characterize dissimilarity in species assemblages (β diversity) among plots (inventory data) or among grid cells (atlas data). We then selected sites to maximize β diversity and used the Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites for maximum β diversity) represented species in the same taxon. Across all 12 datasets, sites selected for maximum β diversity represented species with a median efficiency of 24% (i.e., the surrogate was 24% more effective than random selection of sites), and an interquartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor of how species are distributed on the landscape; in particular β diversity might be useful to maximize the complementarity of a set of sites. Because we tested only within-taxon surrogacy, our results do not prove that β diversity is useful for conservation planning. But our results do justify further investigation to identify the circumstances in which β diversity performs well, and to evaluate it as a cross-taxon surrogate.

]]>
<![CDATA[Genetic Diversity and Structure of Sinopodophyllum hexandrum (Royle) Ying in the Qinling Mountains, China]]> https://www.researchpad.co/article/5989da6bab0ee8fa60b92fa0

Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.

]]>
<![CDATA[Identity and Specificity of Rhizoctonia-Like Fungi from Different Populations of Liparis japonica (Orchidaceae) in Northeast China]]> https://www.researchpad.co/article/5989dae7ab0ee8fa60bbdcac

Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae) is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction and fragmentation, but little was known about the relationship between this orchid species and the mycorrhizal fungi. The Rhizoctonia-like fungi are the commonly accepted mycorrhizal fungi associated with orchids. In this study, the distribution, diversity and specificity of culturable Rhizoctonia-like fungi associated with L. japonica species were investigated from seven populations in Northeast China. Among the 201 endophytic fungal isolates obtained, 86 Rhizoctonia-like fungi were identified based on morphological characters and molecular methods, and the ITS sequences and phylogenetic analysis revealed that all these Rhizoctonia-like fungi fell in the same main clade and were closely related to those of Tulasnella calospora species group. These findings indicated the high mycorrhizal specificity existed in L. japonica species regardless of habitats at least in Northeast China. Our results also supported the wide distribution of this fungal partner, and implied that the decline of L. japonica in Northeast China did not result from high mycorrhizal specificity. Using culture-dependent technology, these mycorrhizal fungal isolates might be important sources for the further utilizing in orchids conservation.

]]>
<![CDATA[Spatial, Phylogenetic, Environmental and Biological Components of Variation in Extinction Risk: A Case Study Using Banksia]]> https://www.researchpad.co/article/5989dab0ab0ee8fa60bab117

Comparative analyses of extinction risk routinely apply methods that account for phylogenetic non-independence, but few analyses of extinction risk have addressed the possibility of spatial non-independence. We explored patterns of extinction risk in Banksia, a plant genus largely endemic to Australia’s southwest biodiversity hotspot, using methods to partition the variance in two response variables (threat status and range size) into phylogenetic, spatial, and independent components. We then estimated the effects of a number of biological and external predictors on extinction risk independently of phylogeny and space. The models explained up to 34.2% of the variation in range size and up to 9.7% of the variation in threat status, nearly all of which was accounted for by the predictors, not by phylogeny or space. In the case of Banksia, therefore, high extinction risk can be clearly linked with biological syndromes (such as a brief flowering period) or geographic indicators of human impact (such as extensive habitat loss), but cannot be predicted from phylogenetic relatedness or geographic proximity.

]]>
<![CDATA[Long-term genetic monitoring of a riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae]: Direct anthropogenic impact versus climate change effects]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be009f

Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and “nature heritage”, the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations’ decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.

]]>
<![CDATA[Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management]]> https://www.researchpad.co/article/5989da87ab0ee8fa60b9c792

Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of understanding levels of genetic diversity and connectivity to making informed management and conservation decisions with the goal to maintain functional connectivity across the region.

]]>
<![CDATA[Genetic Diversity and Population Structure of the Pelagic Thresher Shark (Alopias pelagicus) in the Pacific Ocean: Evidence for Two Evolutionarily Significant Units]]> https://www.researchpad.co/article/5989d9fdab0ee8fa60b72a5a

There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.

]]>