ResearchPad - coupled-natural-and-human-systems Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Fear and stressing in predator–prey ecology: considering the twin stressors of predators and people on mammals]]> Predators induce stress in prey and can have beneficial effects in ecosystems, but can also have negative effects on biodiversity if they are overabundant or have been introduced. The growth of human populations is, at the same time, causing degradation of natural habitats and increasing interaction rates of humans with wildlife, such that conservation management routinely considers the effects of human disturbance as tantamount to or surpassing those of predators. The need to simultaneously manage both of these threats is particularly acute in urban areas that are, increasingly, being recognized as global hotspots of wildlife activity. Pressures from altered predator–prey interactions and human activity may each initiate fear responses in prey species above those that are triggered by natural stressors in ecosystems. If fear responses are experienced by prey at elevated levels, on top of responses to multiple environmental stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects of stress, however, it is rare that stress management is considered in conservation, except in intensive ex situ situations such as in captive breeding facilities or zoos. We propose that mitigation of stress impacts on wildlife is crucial for preserving biodiversity, especially as the value of habitats within urban areas increases. As such, we highlight the need for future studies to consider fear and stress in predator–prey ecology to preserve both biodiversity and ecosystem functioning, especially in areas where human disturbance occurs. We suggest, in particular, that non-invasive in situ investigations of endocrinology and ethology be partnered in conservation planning with surveys of habitat resources to incorporate and reduce the effects of fear and stress on wildlife.

<![CDATA[Resident microbes of lactation rooms and daycares]]>

Dedicated lactation rooms are a modern development as mothers return to work while still providing breastmilk to their absent infants. This study describes the built environment microbiome of lactation rooms and daycares, and explores the influence of temperature and humidity on the microbiome of lactation rooms. Sterile swabs were used to collect samples from five different sites in lactation rooms at University of California, Davis and from five different sites in daycares located in Davis, California. DNA from the swabs was extracted and the V4 region of the 16S rRNA gene was sequenced using Illumina MiSeq. Temperature and relative humidity data were collected on a subset of the lactation rooms. Sampled lactation rooms could be either dedicated lactation rooms or could also serve other functions (e.g., combined lactation room and restroom lounge). The majority of sequence reads were identified as belonging to family Moraxellaceae, with 73% of all reads included in analysis identified as an unknown species of Acinetobacter. Alpha diversity was analyzed using the Shannon index, while beta diversity was analyzed using unweighted and weighted UniFrac distance. The Jaccard distance was used to measure amount of change at sampling locations between time points for analysis of the impact of temperature and humidity on the microbiome. There were significant differences in the beta diversity of the microbiome of lactation rooms by room type. There were also significant differences in the beta diversity of the microbiome by sample collection location. There were no significant differences in either alpha or beta diversity associated with room temperature or humidity. Additional studies are needed to understand if the differences in lactation room type may result in differences in the breastmilk microbiome of milk collected in those rooms, and to what extent any such differences may influence the infant microbiome.

<![CDATA[Accumulation of di-2-ethylhexyl phthalate from polyvinyl chloride flooring into settled house dust and the effect on the bacterial community]]>

Di-2-ethylhexyl phthalate (DEHP) is a plasticizer used in consumer products and building materials, including polyvinyl chloride flooring material. DEHP adsorbs from material and leaches into soil, water, or dust and presents an exposure risk to building occupants by inhalation, ingestion, or absorption. A number of bacterial isolates are demonstrated to degrade DEHP in culture, but bacteria may be susceptible to it as well, thus this study examined the relation of DEHP to bacterial communities in dust. Polyvinyl chloride flooring was seeded with homogenized house dust and incubated for up to 14 days, and bacterial communities in dust were identified at days 1, 7, and 14 using the V3–V4 regions of the bacterial 16S rRNA gene. DEHP concentration in dust increased over time, as expected, and bacterial richness and Shannon diversity were negatively correlated with DEHP concentration. Some sequence variants of Bacillus, Corynebacterium jeddahense, Streptococcus, and Peptoniphilus were relatively more abundant at low concentrations of DEHP, while some Sphingomonas, Chryseobacterium, and a member of the Enterobacteriaceae family were relatively more abundant at higher concentrations. The built environment is known to host lower microbial diversity and biomass than natural environments, and DEHP or other chemicals indoors may contribute to this paucity.

<![CDATA[Chronic playback of boat noise does not impact hatching success or post-hatching larval growth and survival in a cichlid fish]]>

Anthropogenic (man-made) noise has been shown to have a negative impact on the behaviour and physiology of a range of terrestrial and aquatic animals. However, direct assessments of fitness consequences are rare. Here we examine the effect of additional noise on early life stages in the model cichlid fish, Neolamprologus pulcher. Many fishes use and produce sounds, they are crucial elements of aquatic ecosystems, and there is mounting evidence that they are vulnerable to anthropogenic noise; adult N. pulcher have recently been shown to change key behaviours during playback of motor boat noise. Using a split-brood design to eliminate potential genetic effects, we exposed half of the eggs and fry from each clutch to four weeks of playbacks of noise originally recorded from small motor boats with the other half acting as a control (receiving no noise playback). There was no significant effect of additional noise on hatching success or fry survival, length or weight at the end of the exposure period. Although care should be taken not to generalize these findings on a single species from a laboratory study, our data suggest that moderate noise increases do not necessarily have direct negative impacts on early-life survival and growth. Further studies on a range of species in natural conditions are urgently needed to inform conservation efforts and policy decisions about the consequences of anthropogenic noise.

<![CDATA[Microgeographic variation in locomotor traits among lizards in a human-built environment]]>

Microgeographic variation in fitness-relevant traits may be more common than previously appreciated. The fitness of many vertebrates is directly related to their locomotor capacity, a whole-organism trait integrating behavior, morphology, and physiology. Because locomotion is inextricably related to context, I hypothesized that it might vary with habitat structure in a wide-ranging lizard, Podarcis erhardii, found in the Greek Cyclade Islands. I compared lizard populations living on human-built rock walls, a novel habitat with complex vertical structure, with nearby lizard populations that are naive to human-built infrastructure and live in flat, loose-substrate habitat. I tested for differences in morphology, behavior, and performance. Lizards from built sites were larger and had significantly (and relatively) longer forelimbs and hindlimbs. The differences in hindlimb morphology were especially pronounced for distal components—the foot and longest toe. These morphologies facilitated a significant behavioral shift in jumping propensity across a rocky experimental substrate. I found no difference in maximum velocity between these populations; however, females originating from wall sites potentially accelerated faster over the rocky experimental substrate. The variation between these closely neighboring populations suggests that the lizards inhabiting walls have experienced a suite of trait changes enabling them to take advantage of the novel habitat structure created by humans.

<![CDATA[Local villagers’ perceptions of wolves in Jiuzhaigou County, western China]]>

While there have been increasing numbers of reports of human-wolf conflict in China during recent years, little is known about the nature of this conflict. In this study, we used questionnaires and semi-structured interviews to investigate local villagers’ perceptions of wolves in Jiuzhaigou County, western China. We sampled nine villages with more frequent reports of wolf depredation to the local government, but included three villages near alpine pastures in which reports of depredation were less frequent. We sampled 100 residents, a subset of the local population who were more likely to have had experience with wolves. During the preceding three years, most families of the respondents grazed livestock on alpine pastures, and most of them reported that their livestock suffered from depredation by wolves. The mean value of the reported annual livestock loss rates was considerably higher in villages that reported depredation more frequently than in those with less frequent reports of depredation. Most respondents in the more frequently depredated villages perceived an increase in wolf populations, whereas many in the less frequently depredated villages perceived a decrease in wolf populations in their areas. People’s attitudes towards wolves did not differ significantly between these two village categories. The majority of the respondents were negative in their attitude to wolves, despite a prevalent Tibetan culture that favors the protection of wildlife. People’s negative attitude was directly related to the number of livestock owned by their family. Those with a larger number of livestock were more likely to have a negative attitude towards wolves. Factors such as village category, ethnicity, age and education level did not influence people’s attitudes to wolves. We suggest that improved guarding of livestock and provision of monetary support on human resources and infrastructure may mitigate human-wolf conflicts in this region.

<![CDATA[Factors affecting the identification of individual mountain bongo antelope]]>

The recognition of individuals forms the basis of many endangered species monitoring protocols. This process typically relies on manual recognition techniques. This study aimed to calculate a measure of the error rates inherent within the manual technique and also sought to identify visual traits that aid identification, using the critically endangered mountain bongo, Tragelaphus eurycerus isaaci, as a model system. Identification accuracy was assessed with a matching task that required same/different decisions to side-by-side pairings of individual bongos. Error rates were lowest when only the flanks of bongos were shown, suggesting that the inclusion of other visual traits confounded accuracy. Accuracy was also higher for photographs of captive animals than camera-trap images, and in observers experienced in working with mountain bongos, than those unfamiliar with the sub-species. These results suggest that the removal of non-essential morphological traits from photographs of bongos, the use of high-quality images, and relevant expertise all help increase identification accuracy. Finally, given the rise in automated identification and the use of citizen science, something our results would suggest is applicable within the context of the mountain bongo, this study provides a framework for assessing their accuracy in individual as well as species identification.

<![CDATA[Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests]]>

Mediterranean biomes are biodiversity hotspots, and vineyards are important components of the Mediterranean landscape. Over the last few decades, the amount of land occupied by vineyards has augmented rapidly, thereby increasing threats to Mediterranean ecosystems. Land use change and agricultural management have important effects on soil biodiversity, because they change the physical and chemical properties of soil. These changes may also have consequences on wine production considering that soil is a key component of terroir. Here, we describe the taxonomic diversity and metabolic functions of bacterial and fungal communities present in forest and vineyard soils in Chile. To accomplish this goal, we collected soil samples from organic vineyards in central Chile and employed a shotgun metagenomic approach to sequence the microbial DNA. Additionally, we studied the surrounding native forest to obtain a baseline of the soil conditions in the area prior to the establishment of the vineyard. Our metagenomic analyses revealed that both habitats shared most of the soil microbial species. The most abundant genera in the two habitats were the bacteria Candidatus Solibacter and Bradyrhizobium and the fungus Gibberella. Our results suggest that the soil microbial communities are similar in these forests and vineyards. Therefore, we hypothesize that native forests surrounding the vineyards may be acting as a microbial reservoir buffering the effects of the land conversion. Regarding the metabolic diversity, we found that genes pertaining to the metabolism of amino acids, fatty acids, and nucleotides as well as genes involved in secondary metabolism were enriched in forest soils. On the other hand, genes related to miscellaneous functions were more abundant in vineyard soils. These results suggest that the metabolic function of microbes found in these habitats differs, though differences are not related to taxonomy. Finally, we propose that the implementation of environmentally friendly practices by the wine industry may help to maintain the microbial diversity and ecosystem functions associated with natural habitats.

<![CDATA[Differential nest-defense to perceived danger in urban and rural areas by female Eurasian sparrowhawk (Accipiter nisus)]]>

The reaction of wildlife to humans is known to differ with surroundings. In urban environments that provide suitable habitats for breeding birds, animals adapt to humans and their response is accordingly altered. This study examined the nest defense behavior of female Eurasian sparrowhawks (Accipiter nisus) during the breeding season in urban and rural areas of Prague. The females showed four different types of reaction to humans that approached the nest and differed significantly between the two study areas. Contrary to expectations, urban nesting females were more aggressive than rural conspecifics. The intensity of response increased as the season progressed, and females defended their broods to a much greater degree than their clutches in both urban and rural habitats, suggesting a differential effort as a function of their relative investment in the breeding attempt conforming with the parental investment hypothesis.

<![CDATA[Ship noise extends to frequencies used for echolocation by endangered killer whales]]>

Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20–30 dB re 1 µPa2/Hz from 100 to 1,000 Hz), but also at high frequencies (5–13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5–40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa2/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.

<![CDATA[Familiarity breeds content: assessing bird species popularity with culturomics]]>

Understanding public perceptions of biodiversity is essential to ensure continued support for conservation efforts. Despite this, insights remain scarce at broader spatial scales, mostly due to a lack of adequate methods for their assessment. The emergence of new technologies with global reach and high levels of participation provide exciting new opportunities to study the public visibility of biodiversity and the factors that drive it. Here, we use a measure of internet saliency to assess the national and international visibility of species within four taxa of Brazilian birds (toucans, hummingbirds, parrots and woodpeckers), and evaluate how much of this visibility can be explained by factors associated with familiarity, aesthetic appeal and conservation interest. Our results strongly indicate that familiarity (human population within the range of a species) is the most important factor driving internet saliency within Brazil, while aesthetic appeal (body size) best explains variation in international saliency. Endemism and conservation status of a species had small, but often negative, effects on either metric of internet saliency. While further studies are needed to evaluate the relationship between internet content and the cultural visibility of different species, our results strongly indicate that internet saliency can be considered as a broad proxy of cultural interest.

<![CDATA[Nest-building behavior of Monk Parakeets and insights into potential mechanisms for reducing damage to utility poles]]>

The Monk Parakeet (Myiopsitta monachus) commonly uses utility poles as a substrate for building large, bulky nests. These nests often cause fires and electric power outages, creating public safety risks and increasing liability and maintenance costs for electric companies. Previous research has focused on lethal methods and chemical contraception to prevent nesting on utility poles and electrical substations. However, implementation of lethal methods has led to public protests and lawsuits, while chemical contraception may affect other than the targeted species, and must be continually reapplied for effectiveness. One non-lethal alternative, nest removal, is costly and may not be a sustainable measure if Monk Parakeet populations continue to grow. In order to identify cost-effective non-lethal solutions to problems caused by Monk Parakeet nesting, we studied their behavior as they built nests on utility poles. Monk Parakeets initiate nests by attaching sticks at the intersection of the pole and electric lines. We found that parakeets use the electric lines exclusively to gain access to the intersection of lines and pole during nest initiation, and continue to use the lines intensively throughout construction. Monk Parakeets also have more difficulty attaching sticks during the early stages of nest construction than when the nest is nearing completion. These findings suggest that intervention during the earlier stages of nest building, by excluding Monk Parakeets from electric lines adjacent to poles, may be an effective, non-lethal method of reducing or eliminating parakeets nesting on, and damaging, utility poles.

<![CDATA[Honey bee success predicted by landscape composition in Ohio, USA]]>

Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

<![CDATA[Pathogen reduction co-benefits of nutrient best management practices]]>


Many of the practices currently underway to reduce nitrogen, phosphorus, and sediment loads entering the Chesapeake Bay have also been observed to support reduction of disease-causing pathogen loadings. We quantify how implementation of these practices, proposed to meet the nutrient and sediment caps prescribed by the Total Maximum Daily Load (TMDL), could reduce pathogen loadings and provide public health co-benefits within the Chesapeake Bay system.


We used published data on the pathogen reduction potential of management practices and baseline fecal coliform loadings estimated as part of prior modeling to estimate the reduction in pathogen loadings to the mainstem Potomac River and Chesapeake Bay attributable to practices implemented as part of the TMDL. We then compare the estimates with the baseline loadings of fecal coliform loadings to estimate the total pathogen reduction potential of the TMDL.


We estimate that the TMDL practices have the potential to decrease disease-causing pathogen loads from all point and non-point sources to the mainstem Potomac River and the entire Chesapeake Bay watershed by 19% and 27%, respectively. These numbers are likely to be underestimates due to data limitations that forced us to omit some practices from analysis.


Based on known impairments and disease incidence rates, we conclude that efforts to reduce nutrients may create substantial health co-benefits by improving the safety of water-contact recreation and seafood consumption.

<![CDATA[CauseMap: fast inference of causality from complex time series]]>

Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data.

Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM), a method for establishing causality from long time series data (≳25 observations). Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens’ Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement CCM in Julia, a high-performance programming language designed for facile technical computing. Our software package, CauseMap, is platform-independent and freely available as an official Julia package.

Conclusions. CauseMap is an efficient implementation of a state-of-the-art algorithm for detecting causality from time series data. We believe this tool will be a valuable resource for biomedical research and personalized medicine.

<![CDATA[Leadership and management influences the outcome of wildlife reintroduction programs: findings from the Sea Eagle Recovery Project]]>

Wildlife reintroductions and translocations are statistically unlikely to succeed. Nevertheless, they remain a critical part of conservation because they are the only way to actively restore a species into a habitat from which it has been extirpated. Past efforts to improve these practices have attributed the low success rate to failures in the biological knowledge (e.g., ignorance of social behavior, poor release site selection), or to the inherent challenges of reinstating a species into an area where threats have already driven it to local extinction. Such research presumes that the only way to improve reintroduction outcomes is through improved biological knowledge. This emphasis on biological solutions may have caused researchers to overlook the potential influence of other factors on reintroduction outcomes. I employed a grounded theory approach to study the leadership and management of a successful reintroduction program (the Sea Eagle Recovery Project in Scotland, UK) and identify four critical managerial elements that I theorize may have contributed to the successful outcome of this 50-year reintroduction. These elements are: 1. Leadership & Management: Small, dedicated team of accessible experts who provide strong political and scientific advocacy (“champions”) for the project. 2. Hierarchy & Autonomy: Hierarchical management structure that nevertheless permits high individual autonomy. 3. Goals & Evaluation: Formalized goal-setting and regular, critical evaluation of the project’s progress toward those goals. 4. Adaptive Public Relations: Adaptive outreach campaigns that are open, transparent, inclusive (esp. linguistically), and culturally relevant.

<![CDATA[Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability]]>

Effective monitoring, prevention and impact mitigation of nonindigenous aquatic species relies upon the ability to predict dispersal pathways and receiving habitats with the greatest risk of establishment. To examine mechanisms affecting species establishment within a large lake, we combined observations of recreational boater movements with empirical measurements of habitat suitability represented by nearshore wave energy to assess the relative risk of Eurasian watermilfoil (Myriophyllum spicatum) establishment. The model was evaluated using information from a 17 year (1995–2012) sequence of M. spicatum presence and absence monitoring. M. spicatum presence was not specifically correlated with recreational boater movements; however its establishment appears to be limited by wave action in Lake Tahoe. Of the sites in the “High” establishment risk category (n = 37), 54% had current or historical infestations, which included 8 of the 10 sites with the highest relative risk. Of the 11 sites in the “Medium” establishment risk category, 5 had current or historical M. spicatum populations. Most (76%) of the sites in the “Low” establishment risk category were observed in locations with higher wave action. Four sites that received zero boater visits from infested locations were occupied by M. spicatum. This suggests that the boater survey either represents incomplete coverage of boater movement, or other processes, such as the movement of propagules by surface currents or introductions from external sources are important to the establishment of this species. This study showed the combination of habitat specific and dispersal data in a relative risk framework can potentially reduce uncertainty in estimates of invasion risk.

<![CDATA[Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?]]>

Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo.

<![CDATA[Patterns of bird-window collisions inform mitigation on a university campus]]>

Bird-window collisions cause an estimated one billion bird deaths annually in the United States. Building characteristics and surrounding habitat affect collision frequency. Given the importance of collisions as an anthropogenic threat to birds, mitigation is essential. Patterned glass and UV-reflective films have been proven to prevent collisions. At Duke University’s West campus in Durham, North Carolina, we set out to identify the buildings and building characteristics associated with the highest frequencies of collisions in order to propose a mitigation strategy. We surveyed six buildings, stratified by size, and measured architectural characteristics and surrounding area variables. During 21 consecutive days in spring and fall 2014, and spring 2015, we conducted carcass surveys to document collisions. In addition, we also collected ad hoc collision data year-round and recorded the data using the app iNaturalist. Consistent with previous studies, we found a positive relationship between glass area and collisions. Fitzpatrick, the building with the most window area, caused the most collisions. Schwartz and the Perk, the two small buildings with small window areas, had the lowest collision frequencies. Penn, the only building with bird deterrent pattern, caused just two collisions, despite being almost completely made out of glass. Unlike many research projects, our data collection led to mitigation action. A resolution supported by the student government, including news stories in the local media, resulted in the application of a bird deterrent film to the building with the most collisions: Fitzpatrick. We present our collision data and mitigation result to inspire other researchers and organizations to prevent bird-window collisions.

<![CDATA[Forest birds respond to the spatial pattern of exurban development in the Mid-Atlantic region, USA]]>

Housing development beyond the urban fringe (i.e., exurban development) is one of the fastest growing forms of land-use change in the United States. Exurban development’s attraction to natural and recreational amenities has raised concerns for conservation and represents a potential threat to wildlife. Although forest-dependent species have been found particularly sensitive to low housing densities, it is unclear how the spatial distribution of houses affects forest birds. The aim of this study was to assess forest bird responses to changes in the spatial pattern of exurban development and also to examine species responses when forest loss and forest fragmentation were considered. We evaluated landscape composition around North American Breeding Bird Survey stops between 1986 and 2009 by developing a compactness index to assess changes in the spatial pattern of exurban development over time. Compactness was defined as a measure of how clustered exurban development was in the area surrounding each survey stop at each time period considered. We used Threshold Indicator Taxa Analysis to detect the response of forest and forest-edge species in terms of occurrence and relative abundance along the compactness gradient at two spatial scales (400-m and 1-km radius buffer). Our results showed that most forest birds and some forest-edge species were positively associated with high levels of compactness at the larger spatial scale; the proportion of forest in the surrounding landscape also had a significant effect when forest loss and forest fragmentation were accounted for. In contrast, the spatial configuration of exurban development was an important predictor of occurrence and abundance for only a few species at the smaller spatial scale. The positive response of forest birds to compactness at the larger scale could represent a systematic trajectory of decline and could be highly detrimental to bird diversity if exurban growth continues and creates more compacted development.