ResearchPad - deformation https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Mechanical characterization of PVA hydrogels’ rate-dependent response using multi-axial loading]]> https://www.researchpad.co/article/elastic_article_13820 The time-dependent properties of rubber-like synthesized and biological materials are crucial for their applications. Currently, this behavior is mainly measured using axial tensile test, compression test, or indentation. Limited studies performed on using multi-axial loading measurements of time-dependent material behavior exist in the literature. Therefore, the aim of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial loading using cavity expansion and relaxation tests. The tests were performed on PVA hydrogel specimens. Three hyperelasitc models and one term Prony series were used to characterize the viscoelastic response of the hydrogels. Finite element (FE) simulations were performed to verify the validity of the calibrated material coefficients by reproducing the experimental results. The excellent agreement between the experimental, analytical and numerical data proves the capability of the cavity expansion technique to measure the time-dependent behavior of viscoelastic materials.

]]>
<![CDATA[Right ventricular pressure overload directly affects left ventricular torsion mechanics in patients with precapillary pulmonary hypertension]]> https://www.researchpad.co/article/elastic_article_8470 This study examined the impact of septal flattening on left ventricular (LV) torsion in patients with precapillary pulmonary hypertension (PH). Fifty-two patients with proven precapillary PH and 13 healthy controls were included. Ventricular function was assessed including 4D-measurements, tissue velocity imaging, and speckle tracking analysis. Increased eccentricity index (1.39 vs. 1.08, p<0.001), systolic pulmonary artery pressure (64 vs. 29mmHg, p<0.001) and right ventricular Tei index (0.55 vs. 0.28, p = 0.007), and reduced tricuspid annular plane systolic excursion (19.0 vs. 26.5mm, p<0.001) were detected in PH patients as compared to controls. With increasing eccentricity of left ventricle, LV torsion was both decreased and delayed. Torsion rate paralleled this pattern of change during systole, but not during diastole. In conclusion, right ventricular pressure overload directly affects LV torsion mechanics. The echocardiographic methodology applied provides novel insights in the interrelation of right- and left ventricular function.

]]>
<![CDATA[Effect of experimental, morphological and mechanical factors on the murine spinal cord subjected to transverse contusion: A finite element study]]> https://www.researchpad.co/article/elastic_article_8463 Finite element models combined with animal experimental models of spinal cord injury provides the opportunity for investigating the effects of the injury mechanism on the neural tissue deformation and the resulting tissue damage. Thus, we developed a finite element model of the mouse cervical spinal cord in order to investigate the effect of morphological, experimental and mechanical factors on the spinal cord mechanical behavior subjected to transverse contusion. The overall mechanical behavior of the model was validated with experimental data of unilateral cervical contusion in mice. The effects of the spinal cord material properties, diameter and curvature, and of the impactor position and inclination on the strain distribution were investigated in 8 spinal cord anatomical regions of interest for 98 configurations of the model. Pareto analysis revealed that the material properties had a significant effect (p<0.01) for all regions of interest of the spinal cord and was the most influential factor for 7 out of 8 regions. This highlighted the need for comprehensive mechanical characterization of the gray and white matter in order to develop effective models capable of predicting tissue deformation during spinal cord injuries.

]]>
<![CDATA[Height of overburden fracture based on key strata theory in longwall face]]> https://www.researchpad.co/article/Nb6c965ed-0040-4b7a-b381-dffd2122531d

Among the three overburden zones (the caving zone, the fracture zone, and the continuous deformation zone) in longwall coal mining, the continuous deformation zone is often considered to be continuous without cracks, so continuum mechanics can be used to calculate the subsidence of overburden strata. Longwall coal mining, however, will induce the generation of wide cracks in the surface and thus may cause the continuous deformation zone to fracture. In this paper, whether there are cracks in the continuous deformation zone as well as the height of overburden fracture in longwall face and the subsidence and deformation of strata of different fracture penetration ratios were studied by means of physical simulation, theoretical analysis and numerical simulation. The results show that: (1) Rock stratum starts to fracture as long as it has slightly subsided for only tens of millimeters, and the height of fracture development is the height of working face overburden. (2) With the increase of fracture penetration ratio, the subsidence of key strata remains basically unchanged; the surface deformation range and the maximum compression deformation decrease, while the maximum horizontal movement and maximum horizontal tensile deformation increase. Therefore, the subsidence of overburden strata which have fractured but have not broken can be calculated through the continuum mechanics method.

]]>
<![CDATA[Transient Deformation in California From Two Decades of GPS Displacements: Implications for a Three‐Dimensional Kinematic Reference Frame]]> https://www.researchpad.co/article/Nd6dcf325-6fcb-4a25-9772-8945673692b3

Abstract

Our understanding of plate boundary deformation has been enhanced by transient signals observed against the backdrop of time‐independent secular motions. We make use of a new analysis of displacement time series from about 1,000 continuous Global Positioning System (GPS) stations in California from 1999 to 2018 to distinguish tectonic and nontectonic transients from secular motion. A primary objective is to define a high‐resolution three‐dimensional reference frame (datum) for California that can be rapidly maintained with geodetic data to accommodate both secular and time‐dependent motions. To this end, we compare the displacements to those predicted by a horizontal secular fault slip model for the region and construct displacement and strain rate fields. Over the past 19 years, California has experienced 19 geodetically detectable earthquakes and widespread postseismic deformation. We observe postseismic strain rate variations as large as 1,000 nstrain/year with moment releases equivalent up to an Mw6.8 earthquake. We find significant secular differences up to 10 mm/year with the fault slip model, from the Mendocino Triple Junction to the southern Cascadia subduction zone, the northern Basin and Range, and the Santa Barbara channel. Secular vertical uplift is observed across the Transverse Ranges, Coastal Ranges, Sierra Nevada, as well as large‐scale postseismic uplift after the 1999 Mw7.1 Hector Mine and 2010 Mw7.2 El Mayor‐Cucapah earthquakes. We also identify areas of vertical land motions due to anthropogenic, natural, and magmatic processes. Finally, we demonstrate the utility of the kinematic datum by improving the accuracy of high‐spatial‐resolution 12‐day repeat‐cycle Sentinel‐1 Interferometric Synthetic Aperture Radar displacement and velocity maps.

]]>
<![CDATA[In-silico pre-clinical trials are made possible by a new simple and comprehensive lumbar belt mechanical model based on the Law of Laplace including support deformation and adhesion effects]]> https://www.researchpad.co/article/5c89779ad5eed0c4847d3130

Lower back pain is a major public health problem. Despite claims that lumbar belts change spinal posture due to applied pressure on the trunk, no mechanical model has yet been published to prove this treatment. This paper describes a first model for belt design, based on the one hand on the mechanical properties of the fabrics and the belt geometry, and on the other hand on the trunk geometrical and mechanical description. The model provides the estimation of the pressure applied to the trunk, and a unique indicator of the belt mechanical efficiency is proposed: pressure is integrated into a bending moment characterizing the belt delordosing action on the spine. A first in-silico clinical study of belt efficiency for 15 patients with 2 different belts was conducted. Results are very dependent on the body shape: in the case of high BMI patients, the belt effect is significantly decreased, and can be even inverted, increasing the lordosis. The belt stiffness proportionally increases the pressure applied to the trunk, but the influence of the design itself on the bending moment is clearly outlined. Moreover, the belt/trunk interaction, modeled as sticking contact and the specific way patients lock their belts, dramatically modifies the belt action. Finally, even if further developments and tests are still necessary, the model presented in this paper seems suitable for in-silico pre-clinical trials on real body shapes at a design stage.

]]>
<![CDATA[A mass sacrifice of children and camelids at the Huanchaquito-Las Llamas site, Moche Valley, Peru]]> https://www.researchpad.co/article/5c897756d5eed0c4847d2a4c

Here we report the results of excavation and interdisciplinary study of the largest child and camelid sacrifice known from the New World. Stratigraphy, associated artifacts, and radiocarbon dating indicate that it was a single mass killing of more than 140 children and over 200 camelids directed by the Chimú state, c. AD 1450. Preliminary DNA analysis indicates that both boys and girls were chosen for sacrifice. Variability in forms of cranial modification (head shaping) and stable isotope analysis of carbon and nitrogen suggest that the children were a heterogeneous sample drawn from multiple regions and ethnic groups throughout the Chimú state. The Huanchaquito-Las Llamas mass sacrifice opens a new window on a previously unknown sacrificial ritual from fifteenth century northern coastal Peru. While the motivation for such a massive sacrifice is a subject for further research, there is archaeological evidence that it was associated with a climatic event (heavy rainfall and flooding) that could have impacted the economic, political and ideological stability of one of the most powerful states in the New World during the fifteenth century A.D.

]]>
<![CDATA[Real-time adaptive planning method for radiotherapy treatment delivery for prostate cancer patients, based on a library of plans accounting for possible anatomy configuration changes]]> https://www.researchpad.co/article/5c818e8ad5eed0c484cc24c8

Background and purpose

In prostate cancer treatment with external beam radiation therapy (EBRT), prostate motion and internal changes in tissue distribution can lead to a decrease in plan quality. In most currently used planning methods, the uncertainties due to prostate motion are compensated by irradiating a larger treatment volume. However, this could cause underdosage of the treatment volume and overdosage of the organs at risk (OARs). To reduce this problem, in this proof of principle study we developed and evaluated a novel adaptive planning method. The strategy proposed corrects the dose delivered by each beam according to the actual position of the target in order to produce a final dose distribution dosimetrically as similar as possible to the prescribed one.

Material and methods

Our adaptive planning method was tested on a phantom case and on a clinical case. For the first, a pilot study was performed on an in-silico pelvic phantom. A “library” of intensity modulated RT (IMRT) plans corresponding to possible positions of the prostate during a treatment fraction was generated at planning stage. Then a 3D random walk model was used to simulate possible displacements of the prostate during the treatment fraction. At treatment stage, at the end of each beam, based on the current position of the target, the beam from the library of plans, which could reproduce the best approximation of the prescribed dose distribution, was selected and delivered. In the clinical case, the same approach was used on two prostate cancer patients: for the first a tissue deformation was simulated in-silico and for the second a cone beam CT (CBCT) taken during the treatment was used to simulate an intra-fraction change. Then, dosimetric comparisons with the standard treatment plan and, for the second patient, also with an isocenter shift correction, were performed.

Results

For the phantom case, the plan generated using the adaptive planning method was able to meet all the dosimetric requirements and to correct for a misdosage of 13% of the dose prescription on the prostate. For the first clinical case, the standard planning method caused underdosage of the seminal vesicles, respectively by 5% and 4% of the prescribed dose, when the position changes for the target were correctly taken into account. The proposed adaptive planning method corrected any possible missed target coverage, reducing at the same time the dose on the OARs. For the second clinical case, both with the standard planning strategy and with the isocenter shift correction target coverage was significantly worsened (in particular uniformity) and some organs exceeded some toxicity objectives. While with our approach, the most uniform coverage for the target was produced and systematically the lowest toxicity values for the organs at risk were achieved.

Conclusions

In our proof of principle study, the adaptive planning method performed better than the standard planning and the isocenter shift methods for prostate EBRT. It improved the coverage of the treatment volumes and lowered the dose to the OARs. This planning method is particularly promising for hypofractionated IMRT treatments in which a higher precision and control on dose deposition are needed. Further studies will be performed to test more extensively the proposed adaptive planning method and to evaluate it at a full clinical level.

]]>
<![CDATA[Multifractality of posture modulates multisensory perception of stand-on-ability]]> https://www.researchpad.co/article/5c6c7582d5eed0c4843cfe31

By definition, perception is a multisensory process that unfolds in time as a complex sequence of exploratory activities of the organism. In such a system perception and action are integrated, and multiple energy arrays are available simultaneously. Perception of affordances interweaves sensory and motor activities into meaningful behavior given task constraints. The present contribution offers insight into the manner in which perception and action usher the organism through competent functional apprehension of its surroundings. We propose that the tensegrity structure of the body, manifested via multifractality of exploratory bodily movements informs perception of affordances. The affordance of stand-on-ability of ground surfaces served as the experimental paradigm. Observers viewed a surface set to a discrete angle and attempted to match it haptically with a continuously adjustable surface occluded by a curtain, or felt an occluded surface set to a discrete angle then matched it visually with a continuously adjustable visible surface. The complex intertwining of perception and action was demonstrated by the interactions of multifractality of postural sway with multiple energy arrays, responses, and changing geometric task demands.

]]>
<![CDATA[Preoperative estimation of distance between retinal break and limbus with wide-field fundus imaging: Potential clinical utility for conventional scleral buckling]]> https://www.researchpad.co/article/5c6c75add5eed0c4843cffdf

Objective

Accurate scleral marking of retinal breaks is essential for successful scleral buckling. This study aimed to investigate the use of wide-field fundus images obtained with an Optos for preoperative estimation of the distance from the limbus to the retinal breaks.

Methods and analysis

This is a retrospective review of 29 eyes from 26 patients with rhegmatogenous retinal detachment who received scleral buckling with anatomically successful repair. They underwent wide-field fundus photography with Optos California. In the pre- and postoperative fundus images, we measured distances from the macula to the retinal tears (TM), to the center of the vortex veins (VM), to the optic disc (DM), and to the posterior edge of the scleral buckle (BM).

Results

(BM—VM) / DM was significantly correlated with the distance from the limbus to the posterior edge of the scleral buckle that had been determined intraoperatively. (r = 0.705; p<0.001) We applied a regression line derived from this correlation with the value of (TM -VM) / DM in order to calculate estimated distances between retinal breaks and the limbus. The calculated distances were all within the range of distances from the limbus to the anterior and posterior edges of the scleral buckles.

Conclusion

Preoperative analysis of Optos images may be useful for estimating the distance from the limbus to retinal breaks, which might aid scleral marking during scleral buckling surgery.

]]>
<![CDATA[Could posture reflect welfare state? A study using geometric morphometrics in riding school horses]]> https://www.researchpad.co/article/5c633961d5eed0c484ae65a7

Despite the fact that animal posture is known to reflect emotional state, the presence of chronic postures associated with poor welfare has not been investigated with an objective tool for measuring, quantifying and comparing postures. The use of morphometric geometrics (GM) to describe horse posture (profile of the dorsum) has shown to be an effective method of distinguishing populations that are known to differ in terms of welfare states. Here we investigated photographs of 85 riding school horses differing in terms of welfare state, in order to determine if a specific posture (modelled by GM) is associated with altered welfare. The welfare state was estimated with the prevalence of stereotypic or abnormal repetitive behaviours, depressed-like posture and the ear positions. ANOVA results show that horses with stereotypic or abnormal behaviour, and to a lesser degree horses with depressed-like postures, tend to have a flatter, or even hollow, dorsal profile, especially at the neck and croup levels. These altered profiles could represent an additional indicator of poor welfare, easy to use in the field or by owners.

]]>
<![CDATA[Analysis of real crashes against metal roadside barriers]]> https://www.researchpad.co/article/5c61e8d9d5eed0c48496f253

Objective

Metal Road Safety Barriers (MRSB) are one of the devices implemented in roadsides to mitigate the consequences of run-off crashes. In Europe, they have to meet the requirements of the European Standard EN-1317-2. This article analyzes a set of run-off crashes against MRSB, for which an in-depth investigation has been performed, comparing them with the standard tests. It has been observed that in many of these real crashes, the barriers have not worked properly in spite of having passed these standard tests. This paper demonstrates which variables may be responsible for this, with the objective of helping to improve the current test standard through the analysis of new test variables.

Methods

Multidimensional Scaling, a dimension reduction multivariate statistical technique, has been used to better understand how real crashes compare to standard tests, using several impact variables at the same time. Then, a statistical analysis has been developed to show the influence of the “Relative orientation impact angle” on the performance of the MRSB.

Results

Most of the real crashes analyzed are close to “TB11” and “TB32” standard tests. In many of these real crashes, the “Relative orientation impact angle” is very different from the “Impact angle”, and in these situations, the vehicle is not safely redirected to the road concerning the so-called “Exit-Box”.

Conclusions

MRSB are not working properly in some situations that are not far from the standard tests. To handle this, it could be interesting to include the “Relative orientation impact angle” as a control variable in new versions of the EN-1317-2 tests to guarantee the behavior of the MRSB. These results can help to adapt some test variables from the EN-1317-2 to what is happening in crashes.

]]>
<![CDATA[Geodetic Observations of Weak Determinism in Rupture Evolution of Large Earthquakes]]> https://www.researchpad.co/article/5c756541d5eed0c484cbd883

Abstract

The moment evolution of large earthquakes is a subject of fundamental interest to both basic and applied seismology. Specifically, an open problem is when in the rupture process a large earthquake exhibits features dissimilar from those of a lesser magnitude event. The answer to this question is of importance for rapid, reliable estimation of earthquake magnitude, a major priority of earthquake and tsunami early warning systems. Much effort has been made to test whether earthquakes are deterministic, meaning that observations in the first few seconds of rupture can be used to predict the final rupture extent. However, results have been inconclusive, especially for large earthquakes greater than M w7. Traditional seismic methods struggle to rapidly distinguish the size of large‐magnitude events, in particular near the source, even after rupture completion, making them insufficient to resolve the question of predictive rupture behavior. Displacements derived from Global Navigation Satellite System data can accurately estimate magnitude in real time, even for the largest earthquakes. We employ a combination of seismic and geodetic (Global Navigation Satellite System) data to investigate early rupture metrics, to determine whether observational data support deterministic rupture behavior. We find that while the earliest metrics (~5 s of data) are not enough to infer final earthquake magnitude, accurate estimates are possible within the first tens of seconds, prior to rupture completion, suggesting a weak determinism. We discuss the implications for earthquake source physics and rupture evolution and address recommendations for earthquake and tsunami early warning.

]]>
<![CDATA[Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility]]> https://www.researchpad.co/article/5c57e6d2d5eed0c484ef3edd

Background

Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software.

Methods

Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers.

Results

Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance.

Conclusion

Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance.

]]>
<![CDATA[Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation]]> https://www.researchpad.co/article/5c64490fd5eed0c484c2f524

Cryopreservation is an essential tool to meet the increasing demand for stem cells in medical applications. To ensure maintenance of cell function upon thawing, the preservation of the actin cytoskeleton is crucial, but so far there is little quantitative data on the influence of cryopreservation on cytoskeletal structures. For this reason, our study aims to quantitatively describe cryopreservation induced alterations to F-actin in adherent human mesenchymal stem cells, as a basic model for biomedical applications. Here we have characterised the actin cytoskeleton on single-cell level by calculating the circular standard deviation of filament orientation, F-actin content, and average filament length. Cryo-induced alterations of these parameters in identical cells pre and post cryopreservation provide the basis of our investigation. Differences between the impact of slow-freezing and vitrification are qualitatively analyzed and highlighted. Our analysis is supported by live cryo imaging of the actin cytoskeleton via two photon microscopy. We found similar actin alterations in slow-frozen and vitrified cells including buckling of actin filaments, reduction of F-actin content and filament shortening. These alterations indicate limited functionality of the respective cells. However, there are substantial differences in the frequency and time dependence of F-actin disruptions among the applied cryopreservation strategies; immediately after thawing, cytoskeletal structures show least disruption after slow freezing at a rate of 1°C/min. As post-thaw recovery progresses, the ratio of cells with actin disruptions increases, particularly in slow frozen cells. After 120 min of recovery the proportion of cells with an intact actin cytoskeleton is higher in vitrified than in slow frozen cells. Freezing at 10°C/min is associated with a high ratio of impaired cells throughout the post-thawing culture.

]]>
<![CDATA[On identifying collective displacements in apo-proteins that reveal eventual binding pathways]]> https://www.researchpad.co/article/5c478c43d5eed0c484bd1278

Binding of small molecules to proteins often involves large conformational changes in the latter, which open up pathways to the binding site. Observing and pinpointing these rare events in large scale, all-atom, computations of specific protein-ligand complexes, is expensive and to a great extent serendipitous. Further, relevant collective variables which characterise specific binding or un-binding scenarios are still difficult to identify despite the large body of work on the subject. Here, we show that possible primary and secondary binding pathways can be discovered from short simulations of the apo-protein without waiting for an actual binding event to occur. We use a projection formalism, introduced earlier to study deformation in solids, to analyse local atomic displacements into two mutually orthogonal subspaces—those which are “affine” i.e. expressible as a homogeneous deformation of the native structure, and those which are not. The susceptibility to non-affine displacements among the various residues in the apo- protein is then shown to correlate with typical binding pathways and sites crucial for allosteric modifications. We validate our observation with all-atom computations of three proteins, T4-Lysozyme, Src kinase and Cytochrome P450.

]]>
<![CDATA[Older birds have better feathers: A longitudinal study on the long-distance migratory Sand Martin, Riparia riparia]]> https://www.researchpad.co/article/5c390bfad5eed0c48491f3b6

Feather quality is of critical importance to long-distance migratory birds. Here, we report a series of analyses of a unique data set encompassing known-age individuals of the long-distance migratory Sand Martin (Riparia riparia). Sampling over 17 years along the Tisza River, eastern Hungary, has resulted in the recapture of numerous individuals enabling longitudinal and cross-sectional investigation of the role of adaptation to variable environmental conditions on feather morphology. We show that older individuals tend to possess better quality feathers, measured using bending stiffness, feather length and thickness as proxies. Bending stiffness and feather thickness do not change with individual age, in contrast with increases in feather length and declines in daily feather growth versus age of individual alongside moult duration. Individuals who live to older ages tend to have similar, or higher, feather growth rates and better feather quality than individuals captured at younger ages. Thus, on the basis of strong selection against individuals with slow feather growth, as seen in other species of swallows and martins, which causes a delay in moult completion, the results of this analysis highlight the potential cost of producing better quality feathers when this depends on moult duration. Feather length also does change during the lifetime of the individual and thus enabled us to further investigate influence of individual and environmental conditions during the moult. The results of this analysis provide important insights on the adaptive significance of these traits, and the potential use of physical characteristics in unravelling the reasons why long distance migratory bird populations are in global decline.

]]>
<![CDATA[On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model]]> https://www.researchpad.co/article/5c2d2ebcd5eed0c484d9b572

This paper presents a variational framework for dense diffeomorphic atlas-mapping onto high-throughput histology stacks at the 20 μm meso-scale. The observed sections are modelled as Gaussian random fields conditioned on a sequence of unknown section by section rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the high-dimensionality of our parameter space (which is a product space of the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are modelled as arising from a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parameter space emerges as a joint optimization interleaving rigid motion estimation for histology restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We show that joint optimization in this parameter space solves the classical curvature non-identifiability of the histology stacking problem. The algorithms are demonstrated on a collection of whole-brain histological image stacks from the Mouse Brain Architecture Project.

]]>
<![CDATA[Finite element and analytical stochastic models for assessment of underground reinforced concrete water storage facilities and results of their application]]> https://www.researchpad.co/article/5c390ba3d5eed0c48491da02

Typical underground water storage facilities consist of reinforced concrete tanks and pipes. Although methods of their analysis are well developed, the use of these methods does not always give unambiguous results, as presented in the paper. An example of underground tank is considered in which cylindrical roof collapsed during construction under soil and excavator loads. The causes of failure are investigated with deterministic and stochastic models. In the first step nonlinear finite element analysis including soil-structure interaction was performed to examine overall level of the structural safety, which was found satisfactory thus not explaining the collapse. In the second step an analytical stochastic model was developed and analysed with emphasis to sensitivity. The last analysis explained the collapse as a complex of unfavourable states for considered variables and the failure was recognised as a mixed construction-geotechnical-structural problem. The key role played backfill properties and its depth.

]]>
<![CDATA[Largescale mullet (Planiliza macrolepis) can recover from thermal pollution-induced malformations]]> https://www.researchpad.co/article/5c0993d3d5eed0c4842ada20

It is well known in aquaculture that hyperthermic perturbations may cause skeleton malformations in fish, but this phenomenon has rarely been documented in wild species. One rare location where thermal pollution has increased the proportion of malformed fish in wild population is in the waters near the Kuosheng Nuclear Power Plant in Taiwan. At this site, the threshold temperature and critical exposure time for inducing deformations have not been previously determined. In addition, it was unclear whether juvenile fish with thermal-induced malformations are able to recover when the temperature returns below the threshold. In the present study, juvenile largescale mullet (Planiliza macrolepis) were kept at temperatures ranging from 26°C and 36°C for 1–4 weeks, after which malformed fish were maintained at a preferred temperature of 26°C for another 8 weeks. The vertebrae bending index (VBI) of fish was increased after 2 weeks at 36°C, and deformed vertebral columns were detected by radiography after 4 weeks. However, malformations were not observed in groups kept at or below 34°C. Moreover, at the end of the recovery period, both the VBI and the vertebrae malformations had returned to normal. The results of this study may help to more precisely determine potential environmental impacts of thermal pollution and raise the possibility that the capacity for fish vertebrae to recover from the impacts of chronic thermal exposures may be an important consideration in marine fish conservation.

]]>