ResearchPad - disease-vectors https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Selected wetland soil properties correlate to Rift Valley fever livestock mortalities reported in 2009-10 in central South Africa]]> https://www.researchpad.co/article/elastic_article_15754 Outbreaks of Rift Valley fever have devastating impacts on ruminants, humans, as well as on regional and national economies. Although numerous studies on the impact and outbreak of Rift Valley fever exist, relatively little is known about the role of environmental factors, especially soil, on the aestivation of the virus. This study thus selected 22 sites for study in central South Africa, known to be the recurrent epicenter of widespread Rift Valley fever outbreaks in Southern Africa. Soils were described, sampled and analyzed in detail at each site. Of all the soil variables analyzed for, only eight (cation exchange capacity, exchangeable Ca2+, exchangeable K+, exchangeable Mg2+, soluble Ca2+, medium sand, As, and Br) were statistically identified to be potential indicators of sites with reported Rift Valley fever mortalities, as reported for the 2009–2010 Rift Valley fever outbreak. Four soil characteristics (exchangeable K+, exchangeable Mg2+, medium sand, and Br) were subsequently included in a discriminant function that could potentially be used to predict sites that had reported Rift Valley fever-associated mortalities in livestock. This study therefore constitutes an initial attempt to predict sites prone to Rift Valley fever livestock mortality from soil properties and thus serves as a basis for broader research on the interaction between soil, mosquitoes and Rift Valley fever virus. Future research should include other environmental components such as vegetation, climate, and water properties as well as correlating soil properties with floodwater Aedes spp. abundance and Rift Valley fever virus prevalence.

]]>
<![CDATA[Indoor and outdoor residual spraying of a novel formulation of deltamethrin K-Othrine<sup>®</sup> (Polyzone) for the control of simian malaria in Sabah, Malaysia]]> https://www.researchpad.co/article/elastic_article_14704 Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.

]]>
<![CDATA[Factors affecting the microbiome of <i>Ixodes scapularis</i> and <i>Amblyomma americanum</i>]]> https://www.researchpad.co/article/elastic_article_14701 The microbial community composition of disease vectors can impact pathogen establishment and transmission as well as on vector behavior and fitness. While data on vector microbiota are accumulating quickly, determinants of the variation in disease vector microbial communities are incompletely understood. We explored the microbiome of two human-biting tick species abundant in eastern North America (Amblyomma americanum and Ixodes scapularis) to identify the relative contribution of tick species, tick life stage, tick sex, environmental context and vertical transmission to the richness, diversity, and species composition of the tick microbiome. We sampled 89 adult and nymphal Ixodes scapularis (N = 49) and Amblyomma americanum (N = 40) from two field sites and characterized the microbiome of each individual using the v3-v4 hypervariable region of the 16S rRNA gene. We identified significant variation in microbial community composition due to tick species and life stage with lesser impact of sampling site. Compared to unfed nymphs and males, the microbiome of engorged adult female I. scapularis, as well as the egg masses they produced, were low in bacterial richness and diversity and were dominated by Rickettsia, suggesting strong vertical transmission of this genus. Likewise, microbiota of A. americanum nymphs and males were more diverse than those of adult females. Among bacteria of public health importance, we detected several different Rickettsia sequence types, several of which were distinct from known species. Borrelia was relatively common in I. scapularis but did not show the same level of sequence variation as Rickettsia. Several bacterial genera were significantly over-represented in Borrelia-infected I. scapularis, suggesting a potential interaction of facilitative relationship between these taxa; no OTUs were under-represented in Borrelia-infected ticks. The systematic sampling we conducted for this study allowed us to partition the variation in tick microbial composition as a function of tick- and environmentally-related factors. Upon more complete understanding of the forces that shape the tick microbiome it will be possible to design targeted experimental studies to test the impacts of individual taxa and suites of microbes on vector-borne pathogen transmission and on vector biology.

]]>
<![CDATA[Fine-scale population genetic structure of dengue mosquito vector, <i>Aedes aegypti</i>, in Metropolitan Manila, Philippines]]> https://www.researchpad.co/article/elastic_article_14656 Aedes aegypti is an efficient vector of dengue due to its highly adaptive nature to the urban environment. Although it is observed to have a short dispersal (active) capability, it has been shown to be capable of traveling long distances (passive) via human-mediated transportation. This duality may expand the distribution of the mosquito vector in urbanized areas. In this study, we examined the population genetic structure of Ae. aegypti in a highly urbanized and dengue-endemic region of the Philippines, Metropolitan Manila. Our findings indicated the dual dispersal nature of Ae. aegypti. The use of microsatellites as genetic markers also allowed us to describe the potential long-distance dispersal patterns, possibly through human-aided land transportation via the existing road networks of Metropolitan Manila.

]]>
<![CDATA[Kala-azar elimination in a highly-endemic district of Bihar, India: A success story]]> https://www.researchpad.co/article/elastic_article_14634 The World Health Organization (WHO) has set a target to eliminate visceral leishmaniasis (VL), commonly known as “Kala-azar,” as a public health problem in India by 2020. The elimination target is defined as achieving less than 1 case per 10,000 people at the block level. Although India has made substantial progress in the elimination of the disease since 2012, VL remains a stable public health problem in four middle-eastern states including Bihar. Bihar contributes >61% of the total Indian cases annually, and a few districts of the state have reported more than 600 cases annually. In this study, the results indicate that an intensive integrated VL control strategy including epidemiological analysis based on a geographical information system (GIS), hot-spot mapping, active case detection, vector control using the indoor residual spraying (IRS) of chemical insecticides, awareness campaigns, human resource development, the close monitoring of control activities, and active epidemiological surveillance and entomological monitoring can achieve the elimination target in the highly endemic region of Bihar. The elimination of VL from highly endemic zones is urgently required to control any new outbreak. Therefore, the implementation of the Vaishali VL control strategy is strongly recommended in all highly endemic districts of Bihar, India.

]]>
<![CDATA[Identification and detection of a novel point mutation in the Chitin Synthase gene of <i>Culex pipiens</i> associated with diflubenzuron resistance]]> https://www.researchpad.co/article/elastic_article_14502 Diflubenzuron is one of the main larvicides used for the control of the West Nile Virus vector Culex pipiens in the Mediterranean. However, the efficiency of control is now under threat due to the selection of insecticide resistance. Two point mutations were previously identified at the Chitin synthase and shown to confer low and high levels of resistance and a diagnostic was developed to monitor the trait. This study reports the identification of a third mutation associated with high levels of diflubenzuron resistance in Italy. This mutation was also detected in France, whereas no resistance mutations were found in Cx. pipiens mosquitoes sampled from Greece, Portugal and Israel. The findings are of major concern for mosquito control programs in S. Europe, which rely on the use of a limited number of larvicides.

]]>
<![CDATA[Assessing entomological risk factors for arboviral disease transmission in the French Territory of the Wallis and Futuna Islands]]> https://www.researchpad.co/article/elastic_article_13872 The French overseas Territory of the Wallis and Futuna Islands, located in the South Pacific, has been affected by several dengue epidemics, but did not face Zika or chikungunya outbreaks, unlike other neighboring islands. The near-exclusive presence of the Aedes polynesiensis mosquito in the islands of Wallis and Futuna confirmed the role played by this mosquito as a vector of dengue fever. A local Ae. polynesiensis population was recently shown to be able to transmit the Zika virus under experimental conditions, but its susceptibility to the chikungunya virus was still unknown, and recent data on the presence of other potential arbovirus vectors were missing. Therefore, we investigated the entomological risk factors for the transmission of arboviral diseases in the Wallis and Futuna Islands. We reported the occurrence and distribution of different Aedes species, especially the abundant presence of Ae. polynesiensis across the territory and the spread of Ae. aegypti in the island of Wallis. Our results demonstrated the ability of local Ae. polynesiensis populations to transmit the chikungunya virus. These findings highlight the risk of arbovirus transmission in the Wallis and Futuna Islands and provide relevant data to guide prevention and vector control strategies in the territory.

]]>
<![CDATA[A systematic review of alternative surveillance approaches for lymphatic filariasis in low prevalence settings: Implications for post-validation settings]]> https://www.researchpad.co/article/elastic_article_13802 Lymphatic filariasis (LF) is a mosquito-borne disease, which can result in complications including swelling affecting the limbs (lymphoedema) or scrotum (hydrocele). LF can be eliminated by mass drug administration (MDA) which involves whole communities taking drug treatment at regular intervals. After MDA programmes, country programmes conduct the Transmission Assessment Survey (TAS), which tests school children for LF. It is important to continue testing for LF after elimination because there can be a 10-year period between becoming infected and developing symptoms, but it is thought that the use of TAS in such settings is likely to be too expensive and also not sensitive enough to detect low-level infections. Our study assesses the results from 44 studies in areas of low LF prevalence that have investigated methods of surveillance for LF which differ from the standardised TAS approach. These include both human and mosquito studies. Results show that there is currently no standardised approach to testing, but that surveillance can be made more sensitive through the use of new diagnostic tests, such as antibody testing, and also by targeting higher risk populations. However, further research is needed to understand whether these approaches work in a range of settings and whether they are affordable on the ground.

]]>
<![CDATA[A biological control model to manage the vector and the infection of <i>Xylella fastidiosa</i> on olive trees]]> https://www.researchpad.co/article/elastic_article_11237 Xylella fastidiosa pauca ST53 is the bacterium responsible for the Olive Quick Decline Syndrome that has killed millions of olive trees in Southern Italy. A recent work demonstrates that a rational integration of vector and transmission control measures, into a strategy based on chemical and physical control means, can manage Xylella fastidiosa invasion and impact below an acceptable economic threshold. In the present study, we propose a biological alternative to the chemical control action, which involves the predetermined use of an available natural enemy of Philaenus spumarius, i.e., Zelus renardii, for adult vector population and infection biocontrol. The paper combines two different approaches: a laboratory experiment to test the predation dynamics of Zelus renardii on Philaenus spumarius and its attitude as candidate for an inundation strategy; a simulated experiment of inundation, to preliminary test the efficacy of such strategy, before eventually proceeding to an in-field experimentation. With this double-fold approach we show that an inundation strategy with Zelus renardii has the potential to furnish an efficient and “green” solution to Xylella fastidiosa invasion, with a reduction of the pathogen incidence below 10%. The biocontrol model presented here could be promising for containing the impact and spread of Xylella fastidiosa, after an in-field validation of the inundation technique. Saving the fruit orchard, the production and the industry in susceptible areas could thus become an attainable goal, within comfortable parameters for sustainability, environmental safety, and effective plant health protection in organic orchard management.

]]>
<![CDATA[Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti]]> https://www.researchpad.co/article/N8479e8f6-b6ad-4aa7-91b1-bf6bde90184a

Background

Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood.

Methodology/Principal findings

We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background.

Conclusions/Significance

Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.

]]>
<![CDATA[Mapping the coevolution, leadership and financing of research on viral vectors, RNAi, CRISPR/Cas9 and other genomic editing technologies]]> https://www.researchpad.co/article/N5b989351-f842-4a35-9237-928ff4c9c806

Genomic editing technologies are developing rapidly, promising significant developments for biomedicine, agriculture and other fields. In the present investigation, we analyzed and compared the process of innovation for six genomic technologies: viral vectors, RNAi, TALENs, meganucleases, ZFNs and CRISPR/Cas including the profile of the main research institutions and their funders, to understand how innovation evolved and what institutions influenced research trajectories. A Web of Science search of papers on viral vectors RNAi, CRISPR/Cas, TALENs, ZFNs and meganucleases was used to build a citation network of 16,746 papers. An analysis of network clustering combined with text mining was performed. For viral vectors, a long-term process of incremental innovation was identified, which was largely publicly funded in the United States and the European Union. The trajectory of RNAi research included clusters related to the study of RNAi as a biological phenomenon and its use in functional genomics, biomedicine and pest control. A British philanthropic organization and a US pharmaceutical company played a key role in the development of basic RNAi research and clinical application respectively, in addition to government and academic institutions. In the case of CRISPR/Cas research, basic science discoveries led to the technical improvements, and these two in turn provided the information required for the development of biomedical, agricultural, livestock and industrial applications. The trajectory of CRISPR/Cas research exhibits a geopolitical division of the investigation efforts between the US, as the main producer and funder of basic research and technical improvements, and Chinese research institutions increasingly leading applied research. Our results reflect a change in the model for financing science, with reduced public financing for basic science and applied research on publicly funded technological developments in the US, and the emergence of China as a scientific superpower, with implications for the development of applications of genomic technologies.

]]>
<![CDATA[A mathematical model for assessing the effectiveness of controlling relapse in Plasmodium vivax malaria endemic in the Republic of Korea]]> https://www.researchpad.co/article/Nf3d8dda1-10e2-4286-9776-07d534017a03

Malaria has persisted as an endemic near the Demilitarized Zone in the Republic of Korea since the re-emergence of Plasmodium vivax malaria in 1993. The number of patients affected by malaria has increased recently despite many controls tools, one of the reasons behind which is the relapse of malaria via liver hypnozoites. Tafenoquine, a new drug approved by the United States Food and Drug Administration in 2018, is expected to reduce the rate of relapse of malaria hypnozoites and thereby decrease the prevalence of malaria among the population. In this work, we have developed a new transmission model for Plasmodium vivax that takes into account a more realistic intrinsic distribution from existing literature to quantify the current values of relapse parameters and to evaluate the effectiveness of the anti-relapse therapy. The model is especially suitable for estimating parameters near the Demilitarized Zone in Korea, in which the disease follows a distinguishable seasonality. Results were shown that radical cure could significantly reduce the prevalence level of malaria. However, eradication would still take a long time (over 10 years) even if the high-level treatment were to persist. In addition, considering that the vector’s behavior is manipulated by the malaria parasite, relapse repression through vector control at the current level may result in a negative effect in containing the disease. We conclude that the use of effective drugs should be considered together with the increased level of the vector control to reduce malaria prevalence.

]]>
<![CDATA[Prediction model for dengue fever based on interactive effects between multiple meteorological factors in Guangdong, China (2008–2016)]]> https://www.researchpad.co/article/Nfe4e2064-ca0a-4d6d-a8b7-4f75eb296e9a

Introduction

In order to improve the prediction accuracy of dengue fever incidence, we constructed a prediction model with interactive effects between meteorological factors, based on weekly dengue fever cases in Guangdong, China from 2008 to 2016.

Methods

Dengue fever data were derived from statistical data from the China National Notifiable Infectious Disease Reporting Information System. Daily meteorological data were obtained from the China Integrated Meteorological Information Sharing System. The minimum temperature for transmission was identified using data fitting and the Ross-Macdonald model. Correlations and interactive effects were examined using Spearman’s rank correlation and multivariate analysis of variance. A probit regression model to describe the incidence of dengue fever from 2008 to 2016 and forecast the 2017 incidence was constructed, based on key meteorological factors, interactive effects, mosquito-vector factors, and other important factors.

Results

We found the minimum temperature suitable for dengue transmission was ≥18°C, and as 97.91% of cases occurred when the minimum temperature was above 18 °C, the data were used for model training and construction. Epidemics of dengue are related to mean temperature, maximum/minimum and mean atmospheric pressure, and mean relative humidity. Moreover, interactions occur between mean temperature, minimum atmospheric pressure, and mean relative humidity. Our weekly probit regression prediction model is 0.72. Prediction of dengue cases for the first 41 weeks of 2017 exhibited goodness of fit of 0.60.

Conclusion

Our model was accurate and timely, with consideration of interactive effects between meteorological factors.

]]>
<![CDATA[Individual-based network model for Rift Valley fever in Kabale District, Uganda]]> https://www.researchpad.co/article/5c8823c9d5eed0c484638ffb

Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.

]]>
<![CDATA[Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors]]> https://www.researchpad.co/article/5c784ff3d5eed0c4840079a5

Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.

]]>
<![CDATA[Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon riverside]]> https://www.researchpad.co/article/5c8acc3ed5eed0c48498f2cc

In the past few years, relative frequencies of malaria parasite species in communities living in the Colombian Amazon riverside have changed, being Plasmodium vivax (61.4%) and Plasmodium malariae (43.8%) the most frequent. Given this epidemiological scenario, it is important to determine the species of anophelines involved in these parasites’ transmission. This study was carried out in June 2016 in two indigenous communities living close to the tributaries of the Amazon River using protected human bait. The results of this study showed a total abundance of 1,085 mosquitos, of which 99.2% corresponded to Anopheles darlingi. Additionally, only two anopheline species were found, showing low diversity in the study areas. Molecular confirmation of some individuals was then followed by evolutionary analysis by using the COI gene. Nested PCR was used for identifying the three Plasmodium species circulating in the study areas. Of the two species collected in this study, 21.0% of the An. darlingi mosquitoes were infected with P. malariae, 21.9% with P. vivax and 10.3% with Plasmodium falciparum. It exhibited exophilic and exophagic behavior in both study areas, having marked differences regarding its abundance in each community (Tipisca first sampling 49.4%, Tipisca second sampling 39.6% and Doce de Octubre 10.9%). Interestingly, An. mattogrossensis infected by P. vivax was found for the first time in Colombia (in 50% of the four females collected). Analysis of An. darlingi COI gene diversity indicated a single population maintaining a high gene flow between the study areas. The An. darlingi behavior pattern found in both communities represents a risk factor for the region’s inhabitants living/working near these sites. This highlights the need for vector control efforts such as the use of personal repellents and insecticides for use on cattle, which must be made available in order to reduce this Anopheline’s abundance.

]]>
<![CDATA[A survey on Mycobacterium ulcerans in Mosquitoes and March flies captured from endemic areas of Northern Queensland, Australia]]> https://www.researchpad.co/article/5c784fb8d5eed0c4840073ed

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). This nontuberculous mycobacterial infection has been reported in 34 countries worldwide. In Australia, the majority of cases of BU have been recorded in coastal Victoria and the Mossman-Daintree areas of north Queensland. Mosquitoes have been postulated as a vector of M. ulcerans in Victoria, however the specific mode of transmission of this disease is still far from being well understood. In the current study, we trapped and analysed 16,900 (allocated to 845 pools) mosquitoes and 296 March flies from the endemic areas of north Queensland to examine for the presence of M. ulcerans DNA by polymerase chain reaction. Seven of 845 pools of mosquitoes were positive on screening using the IS2404 PCR target (maximum likelihood estimate 0.4/1,000). M. ulcerans DNA was detected from one pool of mosquitoes from which all three PCR targets: IS2404, IS2606 and the ketoreductase B domain of mycolactone polyketide synthase gene were detected. None of the March fly samples were positive for the presence of M. ulcerans DNA.

]]>
<![CDATA[Posterior ventral tegmental area-nucleus accumbens shell circuitry modulates response to novelty]]> https://www.researchpad.co/article/5c8823b2d5eed0c484638e5a

Dopamine release in the nucleus accumbens from ventral tegmental area (VTA) efferent neurons is critical for orientation and response to novel stimuli in the environment. However, there are considerable differences between neuronal populations of the VTA and it is unclear which specific cell populations modulate behavioral responses to environmental novelty. A retroDREADDs (designer drugs exclusively activated by designer receptors) technique, comprising designer G protein-coupled receptors exclusively activated by designer drugs and modulated by retrograde transported Cre, was used to selectively stimulate neurons of the VTA which project to the nucleus accumbens shell (AcbSh). First, the selectivity and expression of the human M3 muscarinic receptor-based adeno-associated virus (AAV-hM3D) was confirmed in primary neuronal cell cultures. Second, AAV-CMV-GFP/Cre was infused into the AcbSh and AAV-hSyn-DIO-hM3D(Gq)-mCherry (a presynaptic enhancer in the presence of its cognate ligand clozapine-N-oxide) was infused into the VTA of ovariectomized female Fisher 344 rats to elicit hM3D(Gq)-mCherry production specifically in neurons of the VTA which synapse in the AcbSh. Finally, administration of clozapine-N-oxide significantly altered rodents’ response to novelty (e.g. absence of white background noise) by activation of hM3D(Gq) receptors, without altering gross locomotor activity or auditory processing per se. Confocal imaging confirmed production of mCherry in neurons of the posterior aspect of the VTA (pVTA) suggesting these neurons contribute to novelty responses. These results suggest the pVTA-AcbSh circuit is potentially altered in motivational disorders such as apathy, depression, and drug addiction. Targeting the pVTA-AcbSh circuit, therefore, may be an effective target for pharmacological management of such psychopathologies.

]]>
<![CDATA[Epidemiological and clinical characteristics of Dengue virus outbreaks in two regions of China, 2014 – 2015]]> https://www.researchpad.co/article/5c8823dcd5eed0c4846391a6

Dengue virus (DENV), a single-stranded RNA virus and Flaviviridae family member, is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. DENV causes dengue fever, which may progress to severe dengue. Hospital-based surveillance was performed in two Chinese regions, Guangzhou and Xishuangbanna, during the dengue epidemics in 2014 and 2015, respectively. Acute-phase serum was obtained from 133 patients with suspected dengue infections during the peak season for dengue cases. Viremia levels, virus sero-positivity, serotype distribution, infection type, clinical manifestations and virus phylogenetics were investigated. Of the 112 DENV-confirmed cases, 92(82.14%) were IgM antibody-positive for DENV, and 69(51.88%) were positive for DENV RNA. From these cases, 47(41.96%) were classified as primary infections, 39(34.82%) as secondary infections and 26 (23.21%) as undetermined infections. The viremia levels were negatively correlated with IgM presence, but had no relationship with the infection type. DENV-1 genotype V dominated in Guangzhou, whereas the DENV-2 Cosmopolitan genotype dominated in Xishuangbanna, where fewer DENV-1 genotype I cases occurred. DENV-2 is associated with severe dengue illness with more serious clinical issues. The strains isolated during 2014–2015 are closely related to the isolates obtained from other Chinese regions and to those isolated recently in Southeast Asian countries. Our results indicate that DENV is no longer an imported virus and is now endemic in China. An extensive seroepidemiological study of DENV and the implementation of vector control measures against it are now warranted in China.

]]>
<![CDATA[Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission]]> https://www.researchpad.co/article/5c897788d5eed0c4847d2f3b

Since past century, vector-borne diseases have been a major public health concern in several states of Mexico. However, Mexico City continues to be free of endemic mosquito-borne viral diseases. The city is the most important politic and economic state of Mexico and one of the most important city of Latin America. Its subtropical highland climate and high elevation (2240 masl) had historically made the occurrence of Aedes species unlikely. However, the presence of other potential disease vectors (Culex spp, Culiseta spp), and the current intermittent introductions of Aedes aegypti, have revealed that control programs must adopt routine vector surveillance in the city. In this study, we provide an updated species list from a five-years of vector surveillance performed in Mexico City. A total of 18,553 mosquito larvae were collected. Twenty-two species from genus Culex, Aedes, Culiseta, Anopheles, Lutzia and Uranotaenia were observed. Nine new mosquito records for the city were found. Ae. albopictus was recorded for the first time in Mexico City. Interestingly, a new record, Ae. epactius was the most frequent species reported. Cx. pipiens quinquefasciatus exhibited the highest number of individuals collected. We detected six areas which harbor the highest mosquito species records in the city. Cemeteries included 68.9% of our collection sites. Temporarily ponds showed the highest species diversity. We detected an increasing presence of Ae. aegypti, which was detected for three consecutive years (2015–2017), predominantly in the warmer microclimates of the city. We found a possible correlation between increasing temperature and Ae. aegypti and Ae. albopictus expanding range. This study provides a starting point for developing strategies related to environmental management for mosquito control. The promotion of mosquito control practices through community participation, mass media and education programmes in schools should be introduced in the city.

]]>