ResearchPad - ears https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Breeding practices and trait preferences of smallholder farmers for indigenous sheep in the northwest highlands of Ethiopia: Inputs to design a breeding program]]> https://www.researchpad.co/article/elastic_article_7865 The aim of this study was to identify breeding practices and trait preferences for indigenous sheep in three districts (Estie, Farta and Lay Gayient) located in the northwest highlands of Ethiopia. Questionnaire survey and choice experiment methods were used to collect data from 370 smallholder farmers. Respondents were selected randomly among smallholder farmers who own sheep in the aforementioned districts. A generalized multinomial logit model was employed to examine preferences for sheep attributes, while descriptive statistics and index values were computed to describe sheep breeding practices. Having the highest index value of 0.36, income generation was ranked as the primary reason for keeping sheep, followed by meat and manure sources. The average flock size per smallholder farmer was 10.21 sheep. The majority of the smallholder farmers (91%) have the experience of selecting breeding rams and ewes within their own flock using diverse criteria. Given the highest index value of 0.34, body size was ranked as a primary ram and ewe selection criteria, followed by coat color. Furthermore, choice modeling results revealed that tail type, body size, coat color, growth rate, horn and ear size have shown significant influences on smallholder farmers’ preference for breeding rams (P<0.01). The part-worth utility coefficients were positive for all ram attributes except ear size. For breeding ewes, mothering ability, coat color, body size, lambing interval, growth rate, tail type and litter size have shown significant effects on choice preferences of smallholder farmers (P<0.05). Moreover, significant scale heterogeneity was observed among respondents for ewe attributes (P<0.001). Overall, the results implied that sheep breeding objectives suitable for the northwest highlands of the country can be derived from traits such as linear body measurement, weight and survival at different ages, and lambing intervals. However, selection decisions at the smallholder level should not only be based on estimated breeding values of traits included in the breeding objective but instead, incorporate ways to address farmers’ preference for qualitative traits.

]]>
<![CDATA[Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans]]> https://www.researchpad.co/article/Nd1837fa5-7737-42fc-aa07-ce2092d99c03

Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3’-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.

]]>
<![CDATA[Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis]]> https://www.researchpad.co/article/N201121b9-bfe0-423d-91d1-e349ea424365

Assessing the well-being of an animal is hindered by the limitations of efficient communication between humans and animals. Instead of direct communication, a variety of parameters are employed to evaluate the well-being of an animal. Especially in the field of biomedical research, scientifically sound tools to assess pain, suffering, and distress for experimental animals are highly demanded due to ethical and legal reasons. For mice, the most commonly used laboratory animals, a valuable tool is the Mouse Grimace Scale (MGS), a coding system for facial expressions of pain in mice. We aim to develop a fully automated system for the surveillance of post-surgical and post-anesthetic effects in mice. Our work introduces a semi-automated pipeline as a first step towards this goal. A new data set of images of black-furred laboratory mice that were moving freely is used and provided. Images were obtained after anesthesia (with isoflurane or ketamine/xylazine combination) and surgery (castration). We deploy two pre-trained state of the art deep convolutional neural network (CNN) architectures (ResNet50 and InceptionV3) and compare to a third CNN architecture without pre-training. Depending on the particular treatment, we achieve an accuracy of up to 99% for the recognition of the absence or presence of post-surgical and/or post-anesthetic effects on the facial expression.

]]>
<![CDATA[Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes]]> https://www.researchpad.co/article/N810c6abb-a507-4d5b-89ae-f4ccddeb69e1

The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.

]]>
<![CDATA[Speech perception in noise: Impact of directional microphones in users of combined electric-acoustic stimulation]]> https://www.researchpad.co/article/5c8977a1d5eed0c4847d31f3

Objectives

Combined electric-acoustic stimulation (EAS) is a well-accepted therapeutic treatment for cochlear implant (CI) users with residual hearing in the low frequencies but severe to profound hearing loss in the high frequencies. The recently introduced SONNETeas audio processor offers different microphone directionality (MD) settings and wind noise reduction (WNR) as front-end processing. The aim of this study was to compare speech perception in quiet and noise between two EAS audio processors DUET 2 and SONNETeas, to assess the impact of MD and WNR on speech perception in EAS users in the absence of wind. Furthermore, subjective rating of hearing performance was registered.

Method

Speech perception and subjective rating with SONNETeas or DUET 2 audio processor were assessed in 10 experienced EAS users. Speech perception was measured in quiet and in a diffuse noise setup (MSNF). The SONNETeas processor was tested with three MD settings omnidirectional/natural/adaptive and with different intensities of WNR. Subjective rating of auditory benefit and sound quality was rated using two questionnaires.

Results

There was no significant difference between DUET 2 and SONNETeas processor using the omnidirectional microphone in quiet and in noise. There was a significant improvement in SRT with MD settings natural (2.2 dB) and adaptive (3.6 dB). No detrimental effect of the WNR algorithm on speech perception was found in the absence of wind. Sound quality was rated as “moderate” for both audio processors.

Conclusions

The different MD settings of the SONNETeas can provide EAS users with better speech perception compared to an omnidirectional microphone. Concerning speech perception in quiet and quality of life, the performance of the DUET 2 and SONNETeas audio processors was comparable.

]]>
<![CDATA[The Bos taurus maternal microbiome: Role in determining the progeny early-life upper respiratory tract microbiome and health]]> https://www.researchpad.co/article/5c89770cd5eed0c4847d233e

Natural transference of maternal microbes to the neonate, especially at birth via the vaginal canal, has recently been recognized in humans and cows; however, its microbial influence on calf health has not yet been documented. We compared the bacterial communities in vaginal and fecal samples from 81 pregnant dairy cows versus those in nasopharyngeal and fecal samples collected at 3, 14 and 35 days of life from their respective progeny. The microbiota of the calf upper respiratory tract (URT), regardless of calf age, was found to be highly similar to the maternal vaginal microbiota. Calf fecal microbiota clustered closely to the maternal fecal microbiota, progressing toward an adult-like state over the first 35 days when relative abundances of taxa were considered. Sixty-four, 65 and 87% of the detected OTUs were shared between cow and calf fecal microbiota at days 3, 14 and 35 respectively, whereas 73, 76 and 87% were shared between maternal vaginal microbiome and calf URT microbiota at days 3, 14 and 35, respectively. Bacteroidetes, Ruminococcus, Clostridium, and Blautia were the top four genera identified in maternal and calf fecal samples. Mannheimia, Moraxella, Bacteroides, Streptococcus and Pseudomonas were the top five genera identified in maternal vaginal and calf URT samples. Mannheimia was relatively more abundant in the vaginal microbiota of cows whose progeny were diagnosed with respiratory and middle ear disease. Our results indicate that maternal vaginal microbiota potentially influences the initial bacterial colonization of the calf URT, and that might have an important impact on the health of the calf respiratory tract and middle ear.

]]>
<![CDATA[Population density and temperature correlate with long-term trends in somatic growth rates and maturation schedules of herring and sprat]]> https://www.researchpad.co/article/5c89775ed5eed0c4847d2b47

We examine long-term trends in the average growth rates and maturation schedules of herring and sprat populations using survey data collected from the North Sea and west of Scotland since the 1960s and 1980s respectively. Otolith age data and maturity data are used to calculate time series of mean lengths at age, von Bertalanffy growth parameters, and probabilistic maturation reaction norms. As the growth and maturation of fish is known to be influenced by temperature and stock abundances, we account for these variables using Generalised Additive Models. Each of the herring populations displayed either steady declines in mean length across multiple age groups, or declines in length followed years later by some recovery. Depending on region, lengths at age of sprat increased or decreased over time. Varying temporal trends in maturation propensity at age and length were observed across herring populations. Many of the trends in growth rate and maturation were correlated to population abundance and/or temperature. In general, abundance is shown to be negatively correlated to growth rates in herring and sprat, and positively correlated with maturation propensity in herring. Temperature is also shown to be correlated to growth and maturation, and although the effect is consistent within species, the temperature effects differ between herring and sprat. This study provides detailed information about long-term trends in growth and maturation, which is lacking for some of these pelagic stocks, especially in the west of Scotland.

]]>
<![CDATA[Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells]]> https://www.researchpad.co/article/5c648d15d5eed0c484c81f40

Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP-tagged Tmc1 and Tmc2b, which are subunits of the MET channel, fail to target to the hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc1-GFP and Tmc2b-GFP to stereocilia. To identify the motifs of Tmie underlying the regulation of the Tmcs, we systematically deleted or replaced peptide segments. We then assessed localization and functional rescue of each mutated/chimeric form of Tmie in tmie mutants. We determined that the first putative helix was dispensable and identified a novel critical region of Tmie, the extracellular region and transmembrane domain, which is required for both mechanosensitivity and Tmc2b-GFP expression in bundles. Collectively, our results suggest that Tmie’s role in sensory hair cells is to target and stabilize Tmc channel subunits to the site of MET.

]]>
<![CDATA[The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear]]> https://www.researchpad.co/article/5c6dca27d5eed0c48452a84d

A braincase of the Cretaceous titanosaurian sauropod Malawisaurus dixeyi, complete except for the olfactory region, was CT scanned and a 3D rendering of the endocast and inner ear was generated. Cranial nerves appear in the same configuration as in other sauropods, including derived features that appear to characterize titanosaurians, specifically, an abducens nerve canal that passes lateral to the pituitary fossa rather than entering it. Furthermore, the hypoglossal nerve exits the skull via a single foramen, consistent with most titanosaurians, while other saurischians, including the basal titanosauriform, Giraffatitan, contain multiple rootlets. The size of the vestibular labyrinth is smaller than in Giraffatitan, but larger than in most derived titanosaurians. Similar to the condition found in Giraffatitan, the anterior semicircular canal is larger than the posterior semicircular canal. This contrasts with more derived titanosaurians that contain similarly sized anterior and posterior semicircular canals, congruent with the interpretation of Malawisaurus as a basal titanosaurian. Measurements of the humerus of Malawisaurus provide a body mass estimate of 4.7 metric tons. Comparison of body mass to radius of the semicircular canals of the vestibular labyrinth reveals that Malawisaurus fits the allometric relationship found in previous studies of extant mammals and Giraffatitan brancai. As in Giraffatitan, the anterior semicircular canal is significantly larger than is predicted by the allometric relationship suggesting greater sensitivity and slower movement of the head in the sagittal plane.

]]>
<![CDATA[Complex tone stimulation may induce binaural diplacusis with low-tone hearing loss]]> https://www.researchpad.co/article/5c57e67ad5eed0c484ef339d

To clarify the possible mechanism causing binaural diplacusis with low-tone hearing loss, two psychoacoustic experiments were performed with 20 healthy subjects, using harmonic complex tones. In the first experiment, two tones were presented unilaterally, either from the right or left side. One of the tones presented was higher in frequency in terms of the fundamental component, but lower or equal in frequency in terms of the highest component, than the other tone. The subjects were asked which tone was higher in pitch after listening to both tones. They were also asked to compare tones in which low-tone components were eliminated. In the second experiment, the subjects heard these complex tones binaurally, with low-tone components eliminated in one ear. In the first experiment, most subjects perceived pitch direction, that is, higher or lower, in a reverse way when low-tone components were eliminated from the complex tones. In the second experiment, approximately half of all subjects heard the tones at different pitches in both ears. Under certain conditions, complex tone stimulation may induce binaural diplacusis when low-tone hearing is lost in one ear.

]]>
<![CDATA[Could posture reflect welfare state? A study using geometric morphometrics in riding school horses]]> https://www.researchpad.co/article/5c633961d5eed0c484ae65a7

Despite the fact that animal posture is known to reflect emotional state, the presence of chronic postures associated with poor welfare has not been investigated with an objective tool for measuring, quantifying and comparing postures. The use of morphometric geometrics (GM) to describe horse posture (profile of the dorsum) has shown to be an effective method of distinguishing populations that are known to differ in terms of welfare states. Here we investigated photographs of 85 riding school horses differing in terms of welfare state, in order to determine if a specific posture (modelled by GM) is associated with altered welfare. The welfare state was estimated with the prevalence of stereotypic or abnormal repetitive behaviours, depressed-like posture and the ear positions. ANOVA results show that horses with stereotypic or abnormal behaviour, and to a lesser degree horses with depressed-like postures, tend to have a flatter, or even hollow, dorsal profile, especially at the neck and croup levels. These altered profiles could represent an additional indicator of poor welfare, easy to use in the field or by owners.

]]>
<![CDATA[Lowering barometric pressure induces neuronal activation in the superior vestibular nucleus in mice]]> https://www.researchpad.co/article/5c64489bd5eed0c484c2ea08

Weather changes accompanied by decreases in barometric pressure are suggested to trigger meteoropathy, i.e., weather-related pain. We previously reported that neuropathic pain-related behavior in rats is aggravated by lowering barometric pressure, and that this effect is abolished by inner ear lesions. These results suggest that mechanisms that increase vestibular neuronal activity may parallel those that contribute to meteoropathy generation. However, it remains unknown whether changes in barometric pressure activate vestibular neuronal activity. To address this issue, we used expression of c-Fos protein as a marker for neural activation. Male and female mice were placed in a climatic chamber, and the barometric pressure was lowered by 40 hPa, from 1013 hPa, for 50 min (LP stimulation). The total number of c-Fos-positive cells in the vestibular nuclei was counted bilaterally after LP stimulation. We also video-recorded mouse behaviors and calculated the total activity score during the LP stimulation. LP stimulation resulted in significant c-Fos expression in the superior vestibular nucleus (SuVe) of male and female mice. There was no effect of LP stimulation on the total activity score. These data show that distinct neurons in the SuVe respond to LP stimulation. Similar mechanisms may contribute to the generation of meteoropathy in humans.

]]>
<![CDATA[Role of freshwater floodplain-tidal slough complex in the persistence of the endangered delta smelt]]> https://www.researchpad.co/article/5c3667e8d5eed0c4841a68a4

Seasonal floodplain wetland is one of the most variable and diverse habitats found in coastal ecosystems, yet it is also one of the most highly altered by humans. The Yolo Bypass, the primary floodplain of the Sacramento River in California’s Central Valley, USA, has been shown to provide various benefits to native fishes when inundated. However, the Yolo Bypass exists as a tidal dead-end slough during dry periods and its value to native fishes has been less studied in this state. During the recent drought (2012–2016), we found higher abundance of the endangered Delta Smelt (Hypomesus transpacificus), than the previous 14 years of fish monitoring within the Yolo Bypass. Meanwhile, Delta Smelt abundance elsewhere in the estuary was at record lows during this time. To determine the value of the Yolo Bypass as a nursery habitat for Delta Smelt, we compared growth, hatch dates, and diets of juvenile Delta Smelt collected within the Yolo Bypass with fish collected among other putative nursery habitats in the San Francisco Estuary between 2010 and 2016. Our results indicated that when compared to other areas of the estuary, fish in the Yolo Bypass spawned earlier, and offspring experienced both higher quality feeding conditions and growth rates. The occurrence of healthy juvenile Delta Smelt in the Yolo Bypass suggested that the region may have acted as a refuge for the species during the drought years of 2012–2016. However, our results also demonstrated that no single region provided the best rearing habitat for juvenile Delta Smelt. It will likely require a mosaic of habitats that incorporates floodplain-tidal sloughs in order to promote the resilience of this declining estuarine fish species.

]]>
<![CDATA[Function and energy consumption constrain neuronal biophysics in a canonical computation: Coincidence detection]]> https://www.researchpad.co/article/5c12cf09d5eed0c484913d9f

Neural morphology and membrane properties vary greatly between cell types in the nervous system. The computations and local circuit connectivity that neurons support are thought to be the key factors constraining the cells’ biophysical properties. Nevertheless, additional constraints can be expected to further shape neuronal design. Here, we focus on a particularly energy-intense system (as indicated by metabolic markers): principal neurons in the medial superior olive (MSO) nucleus of the auditory brainstem. Based on a modeling approach, we show that a trade-off between the level of performance of a functionally relevant computation and energy consumption predicts optimal ranges for cell morphology and membrane properties. The biophysical parameters appear most strongly constrained by functional needs, while energy use is minimized as long as function can be maintained. The key factors that determine model performance and energy consumption are 1) the saturation of the synaptic conductance input and 2) the temporal resolution of the postsynaptic signals as they reach the soma, which is largely determined by active membrane properties. MSO cells seem to operate close to pareto optimality, i.e., the trade-off boundary between performance and energy consumption that is formed by the set of optimal models. Good performance for drastically lower costs could in theory be achieved by small neurons without dendrites, as seen in the avian auditory system, pointing to additional constraints for mammalian MSO cells, including their circuit connectivity.

]]>
<![CDATA[Adaptation and spectral enhancement at auditory temporal perceptual boundaries - Measurements via temporal precision of auditory brainstem responses]]> https://www.researchpad.co/article/5c2544c6d5eed0c48442b871

In human and animal auditory perception the perceived quality of sound streams changes depending on the duration of inter-sound intervals (ISIs). Here, we studied whether adaptation and the precision of temporal coding in the auditory periphery reproduce general perceptual boundaries in the time domain near 20, 100, and 400 ms ISIs, the physiological origin of which are unknown. In four experiments, we recorded auditory brainstem responses with five wave peaks (P1 –P5) in response to acoustic models of communication calls of house mice, who perceived these calls with the mentioned boundaries. The newly introduced measure of average standard deviations of wave latencies of individual animals indicate the waves’ temporal precision (latency jitter) mostly in the range of 30–100 μs, very similar to latency jitter of single neurons. Adaptation effects of response latencies and latency jitter were measured for ISIs of 10–1000 ms. Adaptation decreased with increasing ISI duration following exponential or linear (on a logarithmic scale) functions in the range of up to about 200 ms ISIs. Adaptation effects were specific for each processing level in the auditory system. The perceptual boundaries near 20–30 and 100 ms ISIs were reflected in significant adaptation of latencies together with increases of latency jitter at P2-P5 for ISIs < ~30 ms and at P5 for ISIs < ~100 ms, respectively. Adaptation effects occurred when frequencies in a sound stream were within the same critical band. Ongoing low-frequency components/formants in a sound enhanced (decrease of latencies) coding of high-frequency components/formants when the frequencies concerned different critical bands. The results are discussed in the context of coding multi-harmonic sounds and stop-consonants-vowel pairs in the auditory brainstem. Furthermore, latency data at P1 (cochlea level) offer a reasonable value for the base-to-apex cochlear travel time in the mouse (0.342 ms) that has not been determined experimentally.

]]>
<![CDATA[The relationship between behavioral language laterality, face laterality and language performance in left-handers]]> https://www.researchpad.co/article/5c26976bd5eed0c48470f7a6

Left-handers provide unique information about the relationship between cognitive functions because of their larger variability in hemispheric dominance. This study presents the laterality distribution of, correlations between and test-retest reliability of behavioral lateralized language tasks (speech production, reading and speech perception), face recognition tasks, handedness measures and language performance tests based on data from 98 left-handers. The results show that a behavioral test battery leads to percentages of (a)typical dominance that are similar to those found in neuropsychological studies even though the incidence of clear atypical lateralization (about 20%) may be overestimated at the group level. Significant correlations were found between the language tasks for both reaction time and accuracy lateralization indices. The degree of language laterality could however not be linked to face laterality, handedness or language performance. Finally, individuals were classified less consistently than expected as being typical, bilateral or atypical across all tasks. This may be due to the often good (speech production and perception tasks) but sometimes weak (reading and face tasks) test-retest reliabilities. The lack of highly reliable and valid test protocols for functions unrelated to speech remains one of the largest impediments for individual analysis and cross-task investigations in laterality research.

]]>
<![CDATA[Bilateral delayed endolymphatic hydrops evaluated by bilateral intratympanic injection of gadodiamide with 3T-MRI]]> https://www.researchpad.co/article/5c117b60d5eed0c484698ee1

The purpose of this study was to assess the diagnostic performance of 3T MRI after intratympanic injection of gadodiamide for delayed endolymphatic hydrops (DEH), and assess the relationship between endolymphatic hydrops (ELH) and vestibular function in patients diagnosed with DEH and confirmed by 3T MRI. Nineteen patients clinically diagnosed with DEH (11 ipsilateral DEH, 8 contralateral DEH) participated in this study. Diluted gadodiamide was administered to the bilateral tympanic cavity by injection through the tympanic membrane. At 24 hours post-injection, the ELH was evaluated by MRI. Patient vestibular functions were evaluated by caloric testing and cVEMP. ELH was observed in all patients (19/19: positive rate 100%). The distribution patterns of ELH varied between the cochlear or vestibular region. Vestibular ELH was observed in the affected ear in all ipsilateral DEH patients. In the contralateral DEH patients, however, there were individual differences in the distribution patterns of ELH. Six patients (1 ipsilateral DEH, 5 contralateral DEH) had bilateral ELH. No obvious relationships were observed between ELH and vestibular function. ELH distribution was complicated, particularly in the contralateral DEH cases. It was difficult to identify the existence of ELH by vestibular functional testing alone; therefore, 3T MRI is thought to be useful for identifying the affected ear. A significant number of cases had “bilateral” DEH, particularly among the contralateral DEH cases, indicating that we should pay careful attention to this pathology when treating DEH.

]]>
<![CDATA[Cranial anatomy of the gorgonopsian Cynariops robustus based on CT-reconstruction]]> https://www.researchpad.co/article/5c084219d5eed0c484fcbc21

Gorgonopsia is one of the major clades of non-mammalian synapsids, and includes an array of large-bodied carnivores that were the top terrestrial predators of the late Permian. Most research on the clade has focused on these largest members; small-bodied gorgonopsians are relatively little-studied. Here, we redescribe a small gorgonopsian skull (MB.R.999) from the late Permian (Tropidostoma Assemblage Zone) of South Africa on the basis of neutron and synchrotron CT reconstructions, which yield new data on internal cranial morphology in Gorgonopsia. Because of the largely undistorted nature of MB.R.999, we were also able to reconstruct unossified areas such as the brain endocast and the otic labyrinth. MB.R.999 can be referred to the taxon Cynariops robustus based on its general skull proportions, postcanine tooth count, preparietal morphology, and vomerine morphology. We refer additional small gorgonopsian specimens from the Victoria West area to Cynariops robustus, and consider Cynarioides grimbeeki and Cynarioides laticeps to be synonymous with C. robustus. Inclusion of Cynariops in a phylogenetic analysis of Gorgonopsia recovers it within a large clade of African taxa, more closely related to Lycaenops and rubidgeines than Eriphostoma or Gorgonops.

]]>
<![CDATA[Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability]]> https://www.researchpad.co/article/5c0ae474d5eed0c484589bc7

The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and environmental causes. Historically, most research has not focused on autosomal recessive ID (ARID), which is a significant cause of ID, particularly in areas where parental consanguinity is common. Identification of genetic causes allows for precision diagnosis and improved genetic counseling. We performed whole exome sequencing to 21 Turkish families, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multiple affected siblings born to unaffected parents and/or shared ancestry, we consider all families as ARID. We revealed the underlying causative variants in seven families in MCPH1 (c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAGGATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30), TUSC3 (c.793C>T, p.Q265*) and ZNF335 (c.808C>T, p.R270C and c.3715C>A, p.Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male siblings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) variant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previously published. Additionally in one family, two affected children were homozygous for the c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID. No causative variants were found in the remaining 11 families. A wide variety of variants explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.

]]>
<![CDATA[Dispositional mindfulness in daily life: A naturalistic observation study]]> https://www.researchpad.co/article/5c084187d5eed0c484fc9e41

Mindfulness has seen an extraordinary rise as a scientific construct, yet surprisingly little is known about how it manifests behaviorally in daily life. The present study identifies assumptions regarding how mindfulness relates to behavior and contrasts them against actual behavioral manifestations of trait mindfulness in daily life. Study 1 (N = 427) shows that mindfulness is assumed to relate to emotional positivity, quality social interactions, prosocial orientation and attention to sensory perceptions. In Study 2, 185 participants completed a gold-standard, self-reported mindfulness measure (the FFMQ) and underwent naturalistic observation sampling to assess their daily behaviors. Trait mindfulness was robustly related to a heightened perceptual focus in conversations. However, it was not related to behavioral and speech markers of emotional positivity, quality social interactions, or prosocial orientation. These findings suggest that the subjective and self-reported experience of being mindful in daily life is expressed primarily through sharpened perceptual attention, rather than through other behavioral or social differences. This highlights the need for ecological models of how dispositional mindfulness “works” in daily life, and raises questions about the measurement of mindfulness.

]]>