ResearchPad - electric-conductivity https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Concept of an artificial muscle design on polypyrrole nanofiber scaffolds]]> https://www.researchpad.co/article/elastic_article_8464 Here we present the synthesis and characterization of two new conducting materials having a high electro-chemo-mechanical activity for possible applications as artificial muscles or soft smart actuators in biomimetic structures. Glucose-gelatin nanofiber scaffolds (CFS) were coated with polypyrrole (PPy) first by chemical polymerization followed by electrochemical polymerization doped with dodecylbenzensulfonate (DBS-) forming CFS-PPy/DBS films, or with trifluoromethanesulfonate (CF3SO3-, TF) giving CFS-PPy/TF films. The composition, electronic and ionic conductivity of the materials were determined using different techniques. The electro-chemo-mechanical characterization of the films was carried out by cyclic voltammetry and square wave potential steps in bis(trifluoromethane)sulfonimide lithium solutions of propylene carbonate (LiTFSI-PC). Linear actuation of the CFS-PPy/DBS material exhibited 20% of strain variation with a stress of 0.14 MPa, rather similar to skeletal muscles. After 1000 cycles, the creeping effect was as low as 0,2% having a good long-term stability showing a strain variation per cycle of -1.8% (after 1000 cycles). Those material properties are excellent for future technological applications as artificial muscles, batteries, smart membranes, and so on.

]]>
<![CDATA[Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil]]> https://www.researchpad.co/article/5c75ac6dd5eed0c484d0875e

Borage is a well-known plant of great importance in human nutrition and health. Expanding knowledge of particular plants that have anti-cancer products is a global concern. There is substantial information regarding the benefits, presence and extraction of gamma linolenic acid (GLA; 18:3n6) in different plants around the world, especially in borage seeds. However, there is little information concerning the effects of the salinity of the nutrient solution on the growth and presence of GLA in borage seeds. The objective of this work was to determine the optimal salinity of the nutrient solution for obtaining GLA in soilless cultivation systems. Borage plants were grown in coconut fibre and provided three treatments of nutrient solution of 2.20, 3.35 and 4.50 dS m-1, increasing solution salinity with the standard nutrient solution of concentrated macronutrients as a reference. Vegetative growth, seed production and GLA ratio were measured. The results of vegetative development and GLA production doubled and tripled with the increase in salinity of the nutrient solution, respectively.

]]>
<![CDATA[Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices]]> https://www.researchpad.co/article/5c706761d5eed0c4847c6f87

For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume. Its potential as biopolymer electrolytes was studied. The substitution of nitro group was analyzed by using Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) analysis, Nuclear Magnetic Resonance (NMR) and Elemental Analysis (CHNS). The structure was characterized by X-ray Diffraction (XRD) and its thermal properties were examined by using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Whereas, the ionic conductivity of the samples was analyzed by electrochemical impedance spectroscopy (EIS). From the IR spectrum results, the nitro group peaks of O-nitrochitosan, positioned at 1646 and 1355 cm-1, were clearly seen for all pH media. At pH 6, O-nitrochitosan exhibited the highest degree of substitution at 0.74 when analyzed by CHNS analysis and NMR further proved that C-6 of glucosamine ring was shifted to the higher field. However, the thermal stability and glass transition temperatures were decreased with acidic condition. The highest ionic conductivity of O-nitrochitosan was obtained at ~10−6 cm-1. Overall, the electrochemical property of new O-nitrochitosan showed a good improvement as compared to chitosan and other chitosan derivatives. Hence, O-nitrochitosan is a promising biopolymer electrolyte and has the potential to be applied in electrochemical devices.

]]>
<![CDATA[Microheterogeneity-induced conduction slowing and wavefront collisions govern macroscopic conduction behavior: A computational and experimental study]]> https://www.researchpad.co/article/5b600750463d7e39c5526203

The incidence of cardiac arrhythmias is known to be associated with tissue heterogeneities including fibrosis. However, the impact of microscopic structural heterogeneities on conduction in excitable tissues remains poorly understood. In this study, we investigated how acellular microheterogeneities affect macroscopic conduction under conditions of normal and reduced excitability by utilizing a novel platform of paired in vitro and in silico studies to examine the mechanisms of conduction. Regular patterns of nonconductive micro-obstacles were created in confluent monolayers of the previously described engineered-excitable Ex293 cell line. Increasing the relative ratio of obstacle size to intra-obstacle strand width resulted in significant conduction slowing up to 23.6% and a significant increase in wavefront curvature anisotropy, a measure of spatial variation in wavefront shape. Changes in bulk electrical conductivity and in path tortuosity were insufficient to explain these observed macroscopic changes. Rather, microscale behaviors including local conduction slowing due to microscale branching, and conduction acceleration due to wavefront merging were shown to contribute to macroscopic phenomena. Conditions of reduced excitability led to further conduction slowing and a reversal of wavefront curvature anisotropy due to spatially non-uniform effects on microscopic slowing and acceleration. This unique experimental and computation platform provided critical mechanistic insights in the impact of microscopic heterogeneities on macroscopic conduction, pertinent to settings of fibrotic heart disease.

]]>
<![CDATA[Temperature Modulation of Electric Fields in Biological Matter]]> https://www.researchpad.co/article/5989dafeab0ee8fa60bc5bd2

Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments.

]]>
<![CDATA[Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: A computer modeling study]]> https://www.researchpad.co/article/5989db5eab0ee8fa60be0a82

Background

Tumor treating fields (TTFields) are increasingly used in the treatment of glioblastoma. TTFields inhibit cancer growth through induction of alternating electrical fields. To optimize TTFields efficacy, it is necessary to understand the factors determining the strength and distribution of TTFields. In this study, we provide simple guiding principles for clinicians to assess the distribution and the local efficacy of TTFields in various clinical scenarios.

Methods

We calculated the TTFields distribution using finite element methods applied to a realistic head model. Dielectric property estimates were taken from the literature. Twentyfour tumors were virtually introduced at locations systematically varied relative to the applied field. In addition, we investigated the impact of central tumor necrosis on the induced field.

Results

Local field “hot spots” occurred at the sulcal fundi and in deep tumors embedded in white matter. The field strength was not higher for tumors close to the active electrode. Left/right field directions were generally superior to anterior/posterior directions. Central necrosis focally enhanced the field near tumor boundaries perpendicular to the applied field and introduced significant field non-uniformity within the tumor.

Conclusions

The TTFields distribution is largely determined by local conductivity differences. The well conducting tumor tissue creates a preferred pathway for current flow, which increases the field intensity in the tumor boundaries and surrounding regions perpendicular to the applied field. The cerebrospinal fluid plays a significant role in shaping the current pathways and funnels currents through the ventricles and sulci towards deeper regions, which thereby experience higher fields. Clinicians may apply these principles to better understand how TTFields will affect individual patients and possibly predict where local recurrence may occur. Accurate predictions should, however, be based on patient specific models. Future work is needed to assess the robustness of the presented results towards variations in conductivity.

]]>
<![CDATA[Characterization and Modeling Analysis for Metal-Semiconductor-Metal GaAs Diodes with Pd/SiO2 Mixture Electrode]]> https://www.researchpad.co/article/5989da37ab0ee8fa60b86935

Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φb) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones.

]]>
<![CDATA[Universality of the emergent scaling in finite random binary percolation networks]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc319

In this paper we apply lattice models of finite binary percolation networks to examine the effects of network configuration on macroscopic network responses. We consider both square and rectangular lattice structures in which bonds between nodes are randomly assigned to be either resistors or capacitors. Results show that for given network geometries, the overall normalised frequency-dependent electrical conductivities for different capacitor proportions are found to converge at a characteristic frequency. Networks with sufficiently large size tend to share the same convergence point uninfluenced by the boundary and electrode conditions, can be then regarded as homogeneous media. For these networks, the span of the emergent scaling region is found to be primarily determined by the smaller network dimension (width or length). This study identifies the applicability of power-law scaling in random two phase systems of different topological configurations. This understanding has implications in the design and testing of disordered systems in diverse applications.

]]>
<![CDATA[Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction]]> https://www.researchpad.co/article/5989da8bab0ee8fa60b9dec9

Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV.

]]>
<![CDATA[Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water]]> https://www.researchpad.co/article/5989daf8ab0ee8fa60bc398e

The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process.

]]>
<![CDATA[Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing]]> https://www.researchpad.co/article/5989dad3ab0ee8fa60bb7014

Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1.

]]>
<![CDATA[Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink]]> https://www.researchpad.co/article/5989dab4ab0ee8fa60bac588

Background

Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way.

Methods

The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements.

Results

The electrical resistivity of the fluid like GaIn10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained.

Conclusions

The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life.

]]>
<![CDATA[Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment]]> https://www.researchpad.co/article/5989da0fab0ee8fa60b78e0f

Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter.

]]>
<![CDATA[Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys]]> https://www.researchpad.co/article/5989da1fab0ee8fa60b7e588

Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.

]]>
<![CDATA[Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil]]> https://www.researchpad.co/article/5989dac6ab0ee8fa60bb2ab9

Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility.

]]>
<![CDATA[Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst]]> https://www.researchpad.co/article/5989da7bab0ee8fa60b989e9

Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications.

]]>
<![CDATA[Mixed Convective Peristaltic Flow of Water Based Nanofluids with Joule Heating and Convective Boundary Conditions]]> https://www.researchpad.co/article/5989db46ab0ee8fa60bd8867

Main objective of present study is to analyze the mixed convective peristaltic transport of water based nanofluids using five different nanoparticles i.e. (Al2O3, CuO, Cu, Ag and TiO2). Two thermal conductivity models namely the Maxwell's and Hamilton-Crosser's are used in this study. Hall and Joule heating effects are also given consideration. Convection boundary conditions are employed. Furthermore, viscous dissipation and heat generation/absorption are used to model the energy equation. Problem is simplified by employing lubrication approach. System of equations are solved numerically. Influence of pertinent parameters on the velocity and temperature are discussed. Also the heat transfer rate at the wall is observed for considered five nanofluids using the two phase models via graphs.

]]>
<![CDATA[Ex Vivo and In Silico Feasibility Study of Monitoring Electric Field Distribution in Tissue during Electroporation Based Treatments]]> https://www.researchpad.co/article/5989da2eab0ee8fa60b83a42

Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.

]]>
<![CDATA[Label-Free Determination of the Number of Biomolecules Attached to Cells by Measurement of the Cell's Electrophoretic Mobility in a Microchannel]]> https://www.researchpad.co/article/5989da6dab0ee8fa60b9389b

We developed a label-free method for a determination of the number of biomolecules attached to individual cells by measuring the electrophoretic mobility of the cells in a microchannel. The surface of a biological cell, which is dispersed in aqueous solution, is normally electrically charged and the charge quantity at the cell's surface is slightly changed once antibody molecules are attached to the cell, based on which we detect the attachment of antibody molecules to the surface of individual red blood cells by electrophoretic mobility measurement. We also analyzed the number of antibody molecules attached to the cell's surface using a flow cytometer. We found that there is a clear correlation between the number of antibody molecules attached to the individual cells and the electophoretic mobility of the cells. The present technique may well be utilized not only in the field of cell biology but also in the medical and pharmaceutical industries.

]]>
<![CDATA[Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers]]> https://www.researchpad.co/article/5989db4bab0ee8fa60bda5a1

As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.

]]>