ResearchPad - electrophysiological-techniques https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Model based estimation of QT intervals in non-invasive fetal ECG signals]]> https://www.researchpad.co/article/elastic_article_7659 The end timing of T waves in fetal electrocardiogram (fECG) is important for the evaluation of ST and QT intervals which are vital markers to assess cardiac repolarization patterns. Monitoring malignant fetal arrhythmias in utero is fundamental to care in congenital heart anomalies preventing perinatal death. Currently, reliable detection of end of T waves is possible only by using fetal scalp ECG (fsECG) and fetal magnetocardiography (fMCG). fMCG is expensive and less accessible and fsECG is an invasive technique available only during intrapartum period. Another safer and affordable alternative is the non-invasive fECG (nfECG) which can provide similar assessment provided by fsECG and fMECG but with less accuracy (not beat by beat). Detection of T waves using nfECG is challenging because of their low amplitudes and high noise. In this study, a novel model-based method that estimates the end of T waves in nfECG signals is proposed. The repolarization phase has been modeled as the discharging phase of a capacitor. To test the model, fECG signals were collected from 58 pregnant women (age: (34 ± 6) years old) bearing normal and abnormal fetuses with gestational age (GA) 20-41 weeks. QT and QTc intervals have been calculated to test the level of agreement between the model-based and reference values (fsECG and Doppler Ultrasound (DUS) signals) in normal subjects. The results of the test showed high agreement between model-based and reference values (difference < 5%), which implies that the proposed model could be an alternative method to detect the end of T waves in nfECG signals.

]]>
<![CDATA[The impact of body posture on intrinsic brain activity: The role of beta power at rest]]> https://www.researchpad.co/article/N65f7a4e6-ac5f-46ef-91d2-3d4de84bb5d0

Tying the hands behind the back has detrimental effects on sensorimotor perceptual tasks. Here we provide evidence that beta band oscillatory activity in a resting state condition might play a crucial role in such detrimental effects. EEG activity at rest was measured from thirty young participants (mean age = 24.03) in two different body posture conditions. In one condition participants were required to keep their hands freely resting on the table. In the other condition, participants’ hands were tied behind their back. Increased beta power was observed in the left inferior frontal gyrus during the tied hands condition compared to the free hands condition. A control experiment ruled out alternative explanations for observed change in beta power, including muscle tension. Our findings provide new insights on how body postural manipulations impact on perceptual tasks and brain activity.

]]>
<![CDATA[Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings]]> https://www.researchpad.co/article/N12f161cb-ce31-436b-989e-fa44b0a6dffa

Electrical recording permits direct readout of neural activity but offers limited ability to correlate it to the network topography. On the other hand, optical imaging reveals the architecture of neural circuits, but relies on bulky optics and fluorescent reporters whose signals are attenuated by the brain tissue. Here we introduce implantable devices to record brain activities based on the field effect, which can be further extended with capability of label-free electrophysiological mapping. Such devices reply on light-addressable potentiometric sensors (LAPS) coupled to polymer fibers with integrated electrodes and optical waveguide bundles. The LAPS utilizes the field effect to convert electrophysiological activity into regional carrier redistribution, and the neural activity is read out in a spatially resolved manner as a photocurrent induced by a modulated light beam. Spatially resolved photocurrent recordings were achieved by illuminating different pixels within the fiber bundles. These devices were applied to record local field potentials in the mouse hippocampus. In conjunction with the raster-scanning via the single modulated beam, this technology may enable fast label-free imaging of neural activity in deep brain regions.

]]>
<![CDATA[Evaluation of upconverting nanoparticles towards heart theranostics]]> https://www.researchpad.co/article/Nf188e231-36c5-4bb6-9ed3-e7a465fadb41

Restricted and controlled drug delivery to the heart remains a challenge giving frequent off-target effects as well as limited retention of drugs in the heart. There is a need to develop and optimize tools to allow for improved design of drug candidates for treatment of heart diseases. Over the last decade, novel drug platforms and nanomaterials were designed to confine bioactive materials to the heart. Yet, the research remains in its infancy, not only in the development of tools but also in the understanding of effects of these materials on cardiac function and tissue integrity. Upconverting nanoparticles are nanomaterials that recently accelerated interest in theranostic nanomedicine technologies. Their unique photophysical properties allow for sensitive in vivo imaging that can be combined with spatio-temporal control for targeted release of encapsulated drugs.

Here we synthesized upconverting NaYF4:Yb,Tm nanoparticles and show for the first time their innocuity in the heart, when injected in the myocardium or in the pericardial space in mice. Nanoparticle retention and upconversion in the cardiac region did not alter heart rate variability, nor cardiac function as determined over a 15-day time course ensuing the sole injection. Altogether, our nanoparticles show innocuity primarily in the pericardial region and can be safely used for controlled spatiotemporal drug delivery. Our results support the use of upconverting nanoparticles as potential theranostics tools overcoming some of the key limitations associated with conventional experimental cardiology.

]]>
<![CDATA[Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications]]> https://www.researchpad.co/article/Ndb8f5881-c148-4c1d-a8e2-b5151d4191da

Aim

Fuzzy wavelet neural network (FWNN) has proven to be a promising strategy in the identification of nonlinear systems. The network considers both global and local properties, deals with imprecision present in sensory data, leading to desired precisions. In this paper, we proposed a new FWNN model nominated “Fuzzy Jump Wavelet Neural Network” (FJWNN) for identifying dynamic nonlinear-linear systems, especially in practical applications.

Methods

The proposed FJWNN is a fuzzy neural network model of the Takagi-Sugeno-Kang type whose consequent part of fuzzy rules is a linear combination of input regressors and dominant wavelet neurons as a sub-jump wavelet neural network. Each fuzzy rule can locally model both linear and nonlinear properties of a system. The linear relationship between the inputs and the output is learned by neurons with linear activation functions, whereas the nonlinear relationship is locally modeled by wavelet neurons. Orthogonal least square (OLS) method and genetic algorithm (GA) are respectively used to purify the wavelets for each sub-JWNN. In this paper, fuzzy rule induction improves the structure of the proposed model leading to less fuzzy rules, inputs of each fuzzy rule and model parameters. The real-world gas furnace and the real electromyographic (EMG) signal modeling problem are employed in our study. In the same vein, piecewise single variable function approximation, nonlinear dynamic system modeling, and Mackey–Glass time series prediction, ratify this method superiority. The proposed FJWNN model is compared with the state-of-the-art models based on some performance indices such as RMSE, RRSE, Rel ERR%, and VAF%.

Results

The proposed FJWNN model yielded the following results: RRSE (mean±std) of 10e-5±6e-5 for piecewise single-variable function approximation, RMSE (mean±std) of 2.6–4±2.6e-4 for the first nonlinear dynamic system modelling, RRSE (mean±std) of 1.59e-3±0.42e-3 for Mackey–Glass time series prediction, RMSE of 0.3421 for gas furnace modelling and VAF% (mean±std) of 98.24±0.71 for the EMG modelling of all trial signals, indicating a significant enhancement over previous methods.

Conclusions

The FJWNN demonstrated promising accuracy and generalization while moderating network complexity. This improvement is due to applying main useful wavelets in combination with linear regressors and using fuzzy rule induction. Compared to the state-of-the-art models, the proposed FJWNN yielded better performance and, therefore, can be considered a novel tool for nonlinear system identification.

]]>
<![CDATA[Adaptive multi-degree of freedom Brain Computer Interface using online feedback: Towards novel methods and metrics of mutual adaptation between humans and machines for BCI]]> https://www.researchpad.co/article/5c89771ad5eed0c4847d2469

This paper proposes a novel adaptive online-feedback methodology for Brain Computer Interfaces (BCI). The method uses ElectroEncephaloGraphic (EEG) signals and combines motor with speech imagery to allow for tasks that involve multiple degrees of freedom (DoF). The main approach utilizes the covariance matrix descriptor as feature, and the Relevance Vector Machines (RVM) classifier. The novel contributions include, (1) a new method to select representative data to update the RVM model, and (2) an online classifier which is an adaptively-weighted mixture of RVM models to account for the users’ exploration and exploitation processes during the learning phase. Instead of evaluating the subjects’ performance solely based on the conventional metric of accuracy, we analyze their skill’s improvement based on 3 other criteria, namely the confusion matrix’s quality, the separability of the data, and their instability. After collecting calibration data for 8 minutes in the first run, 8 participants were able to control the system while receiving visual feedback in the subsequent runs. We observed significant improvement in all subjects, including two of them who fell into the BCI illiteracy category. Our proposed BCI system complements the existing approaches in several aspects. First, the co-adaptation paradigm not only adapts the classifiers, but also allows the users to actively discover their own way to use the BCI through their exploration and exploitation processes. Furthermore, the auto-calibrating system can be used immediately with a minimal calibration time. Finally, this is the first work to combine motor and speech imagery in an online feedback experiment to provide multiple DoF for BCI control applications.

]]>
<![CDATA[Exploring magnetohydrodynamic voltage distributions in the human body: Preliminary results]]> https://www.researchpad.co/article/5c89777ed5eed0c4847d2e42

Background

The aim of this study was to noninvasively measure regional contributions of vasculature in the human body using magnetohydrodynamic voltages (VMHD) obtained from electrocardiogram (ECG) recordings performed inside MRI’s static magnetic field (B0). Integrating the regional VMHD over the Swave-Twave segment of the cardiac cycle (Vsegment) provides a non-invasive method for measuring regional blood volumes, which can be rapidly obtained during MRI without incurring additional cost.

Methods

VMHD was extracted from 12-lead ECG traces acquired during gradual introduction into a 3T MRI. Regional contributions were computed utilizing weights based on B0’s strength at specified distances from isocenter. Vsegment mapping was performed in six subjects and validated against MR angiograms (MRA).

Results

Fluctuations in Vsegment, which presented as positive trace deflections, were found to be associated with aortic-arch flow in the thoracic cavity, the main branches of the abdominal aorta, and the bifurcation of the common iliac artery. The largest fluctuation corresponded to the location where the aortic arch was approximately orthogonal to B0. The smallest fluctuations corresponded to areas of vasculature that were parallel to B0. Significant correlations (specifically, Spearman’s ranked correlation coefficients of 0.96 and 0.97 for abdominal and thoracic cavities, respectively) were found between the MRA and Vsegment maps (p < 0.001).

Conclusions

A novel non-invasive method to extract regional blood volumes from ECGs was developed and shown to be a rapid means to quantify peripheral and abdominal blood volumes.

]]>
<![CDATA[Cyborg groups enhance face recognition in crowded environments]]> https://www.researchpad.co/article/5c89773bd5eed0c4847d2790

Recognizing a person in a crowded environment is a challenging, yet critical, visual-search task for both humans and machine-vision algorithms. This paper explores the possibility of combining a residual neural network (ResNet), brain-computer interfaces (BCIs) and human participants to create “cyborgs” that improve decision making. Human participants and a ResNet undertook the same face-recognition experiment. BCIs were used to decode the decision confidence of humans from their EEG signals. Different types of cyborg groups were created, including either only humans (with or without the BCI) or groups of humans and the ResNet. Cyborg groups decisions were obtained weighing individual decisions by confidence estimates. Results show that groups of cyborgs are significantly more accurate (up to 35%) than the ResNet, the average participant, and equally-sized groups of humans not assisted by technology. These results suggest that melding humans, BCI, and machine-vision technology could significantly improve decision-making in realistic scenarios.

]]>
<![CDATA[A comparison study of anxiety in children undergoing brain MRI vs adults undergoing brain MRI vs children undergoing an electroencephalogram]]> https://www.researchpad.co/article/5c9902cbd5eed0c484b985cc

Background

Magnetic resonance imaging (MRI) of the brain in children and adolescents is a well-established method in both clinical practice and in neuroscientific research. This practice is sometimes viewed critically, as MRI scans might expose minors (e.g. through scan-associated fears) to more than the legally permissible “minimal burden”. While there is evidence that a significant portion of adults undergoing brain MRI scans experience anxiety, data on anxiety in children and adolescents undergoing brain MRI scans is rare. This study therefore aimed to examine the prevalence and level of anxiety in children and adolescents who had MRI scans of the brain, and to compare the results to adults undergoing brain MRI scans, and to children and adolescents undergoing electroencephalography (EEG; which is usually regarded a “minimal burden”).

Method

Participants were 57 children and adolescents who had a brain MRI scan (MRI-C; mean age 12.9 years), 28 adults who had a brain MRI scan (MRI-A; mean age 43.7 years), and 66 children and adolescents undergoing EEG (EEG-C; mean age 12.9 years). Anxiety was assessed on the subjective (situational anxiety) and on the physiological level (arousal), before and after the respective examination.

Results

More than 98% of children and adolescents reported no or only minimal fear during the MRI scan. Both pre- and post-examination, the MRI-C and the MRI-A groups did not differ significantly with respect to situational anxiety (p = 0.262 and p = 0.374, respectively), and to physiological arousal (p = 0.050, p = 0.472). Between the MRI-C and the EEG-C group, there were also no significant differences in terms of situational anxiety (p = 0.525, p = 0.875), or physiological arousal (p = 0.535, p = 0.189). Prior MRI experience did not significantly influence subjective or physiological anxiety parameters.

Conclusions

In this study, children and adolescents undergoing a brain MRI scan did not experience significantly more anxiety than those undergoing an EEG, or adults undergoing MRI scanning. Therefore, a general exclusion of minors from MRI research studies does not appear reasonable.

]]>
<![CDATA[Electrophysiological correlates of concept type shifts]]> https://www.researchpad.co/article/5c8823b9d5eed0c484638ef4

A recent semantic theory of nominal concepts by Löbner [1] posits that–due to their inherent uniqueness and relationality properties–noun concepts can be classified into four concept types (CTs): sortal, individual, relational, functional. For sortal nouns the default determination is indefinite (a stone), for individual nouns it is definite (the sun), for relational and functional nouns it is possessive (his ear, his father). Incongruent determination leads to a concept type shift: his father (functional concept: unique, relational)–a father (sortal concept: non-unique, non-relational). Behavioral studies on CT shifts have demonstrated a CT congruence effect, with congruent determiners triggering faster lexical decision times on the subsequent noun than incongruent ones [2, 3]. The present ERP study investigated electrophysiological correlates of congruent and incongruent determination in German noun phrases, and specifically, whether the CT congruence effect could be indexed by such classic ERP components as N400, LAN or P600. If incongruent determination affects the lexical retrieval or semantic integration of the noun, it should be reflected in the amplitude of the N400 component. If, however, CT congruence is processed by the same neuronal mechanisms that underlie morphosyntactic processing, incongruent determination should trigger LAN or/and P600. These predictions were tested in two ERP studies. In Experiment 1, participants just listened to noun phrases. In Experiment 2, they performed a wellformedness judgment task. The processing of (in)congruent CTs (his sun vs. the sun) was compared to the processing of morphosyntactic and semantic violations in control conditions. Whereas the control conditions elicited classic electrophysiological violation responses (N400, LAN, & P600), CT-incongruences did not. Instead they showed novel concept-type specific response patterns. The absence of the classic ERP components suggests that CT-incongruent determination is not perceived as a violation of the semantic or morphosyntactic structure of the noun phrase.

]]>
<![CDATA[Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms]]> https://www.researchpad.co/article/5c8acc7cd5eed0c48498f842

Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2)2β2- and LS-(α4β2)2α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces. However LS-(α4β2)2α4-nAChR also respond to higher concentrations of ACh, acting at a third α4(+)/(-)α4 subunit interface. To probe isoform functional differences further, HS- and LS-α4β2-nAChR were expressed in Xenopus laevis oocytes and single-channel responses were assessed using cell-attached patch-clamp. In the presence of a low ACh concentration, both isoforms produce low-bursting function. HS-(α4β2)2β2-nAChR exhibit a single conductance state, whereas LS-(α4β2)2α4-nAChR display two distinctive conductance states. A higher ACh concentration did not preferentially recruit either conductance state, but did result in increased LS-(α4β2)2α4-nAChR bursting and reduced closed times. Introduction of an α4(+)/(-)α4-interface loss-of-function α4W182A mutation abolished these changes, confirming this site’s role in mediating LS-(α4β2)2α4-nAChR responses. Small or large amplitude openings are highly-correlated within individual LS-(α4β2)2α4-nAChR bursts, suggesting that they arise from distinct intermediate states, each of which is stabilized by α4(+)/(-)α4 site ACh binding. These findings are consistent with α4(+)/(-)α4 subunit interface occupation resulting in allosteric potentiation of agonist actions at α4(+)/(-)β2 subunit interfaces, rather than independent induction of high conductance channel openings.

]]>
<![CDATA[Introducing chaotic codes for the modulation of code modulated visual evoked potentials (c-VEP) in normal adults for visual fatigue reduction]]> https://www.researchpad.co/article/5c897745d5eed0c4847d28a9

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.

]]>
<![CDATA[The demanding grey zone: Sport indices by cardiac magnetic resonance imaging differentiate hypertrophic cardiomyopathy from athlete’s heart]]> https://www.researchpad.co/article/5c6f152bd5eed0c48467ae7f

Background

We aimed to characterize gender specific left ventricular hypertrophy using a novel, accurate and less time demanding cardiac magnetic resonance (CMR) quantification method to differentiate physiological hypertrophy and hypertrophic cardiomyopathy based on a large population of highly trained athletes and hypertrophic cardiomyopathy patients.

Methods

Elite athletes (n = 150,>18 training hours/week), HCM patients (n = 194) and athletes with hypertrophic cardiomyopathy (n = 10) were examined by CMR. CMR based sport indices such as maximal end-diastolic wall thickness to left ventricular end-diastolic volume index ratio (EDWT/LVEDVi) and left ventricular mass to left ventricular end-diastolic volume ratio (LVM/LVEDV) were calculated, established using both conventional and threshold-based quantification method.

Results

Whereas 47.5% of male athletes, only 4.1% of female athletes were in the grey zone of hypertrophy (EDWT 13-16mm). EDWT/LVEDVi discriminated between physiological and pathological left ventricular hypertrophy with excellent diagnostic accuracy (AUCCQ:0.998, AUCTQ:0.999). Cut-off value for LVM/LVEDVCQ<0.82 mm×m2/ml and for EDWT/LVEDViTQ<1.27 discriminated between physiological and pathological left ventricular hypertrophy with a sensitivity of 77.8% and 89.2%, a specificity of 86.7% and 91.3%, respectively. LVM/LVEDV evaluated using threshold-based quantification performed significantly better than conventional quantification even in the male subgroup with EDWT between 13-16mm (p<0.001).

Conclusions

Almost 50% of male highly trained athletes can reach EDWT of 13 mm. CMR based sport indices provide an important tool to distinguish hypertrophic cardiomyopathy from athlete’s heart, especially in highly trained athletes in the grey zone of hypertrophy.

]]>
<![CDATA[Isolated diastolic potentials as predictors of success in ablation of right ventricular outflow tract idiopathic premature ventricular contractions]]> https://www.researchpad.co/article/5c648cdbd5eed0c484c8196e

Background and aims

Discrete potentials, low voltage and fragmented electrograms, have been previously reported at ablation site, in patients with premature ventricular contractions (PVCs) originating in the right ventricular outflow tract (RVOT). The aim of this study was to review the electrograms at ablation site and assess the presence of diastolic potentials and their association with success.

Methods

We retrospectively reviewed the electrograms obtained at the radiofrequency (RF) delivery sites of 48 patients subjected to ablation of RVOT frequent PVCs. We assessed the duration and amplitude of local electrogram, local activation time, and presence of diastolic potentials and fragmented electrograms.

Results

We reviewed 134 electrograms, median 2 (1–4) per patient. Success was achieved in 40 patients (83%). At successful sites the local activation time was earlier– 54 (-35 to -77) ms vs -26 (-12 to -35) ms, p<0.0001; the local electrogram had lower amplitude 1 (0.45–1.15) vs 1.5 (0.5–2.1) mV, p = 0.006, and longer duration 106 (80–154) vs 74 (60–90) ms, p<0.0001. Diastolic potentials and fragmented electrograms were more frequently present, respectively 76% vs 9%, p <0.0001 and 54% vs 11%, p<0.0001. In univariable analysis these variables were all associated with success. In multivariable analysis only the presence of diastolic potentials [OR 15.5 (95% CI: 3.92–61.2; p<0.0001)], and the value of local activation time [OR 1.11 (95% CI: 1.049–1.172 p<0.0001)], were significantly associated with success.

Conclusion

In this group of patients the presence of diastolic potentials at the ablation site was associated with success.

]]>
<![CDATA[Patterns of muscle coordination during dynamic glenohumeral joint elevation: An EMG study]]> https://www.researchpad.co/article/5c6730d6d5eed0c484f381e4

The shoulder relies heavily on coordinated muscle activity for normal function owing to its limited osseous constraint. However, previous studies have failed to examine the sophisticated interrelationship between all muscles. It is essential for these normal relationships to be defined as a basis for understanding pathology. Therefore, the primary aim of the study was to investigate shoulder inter-muscular coordination during different planes of shoulder elevation. Twenty healthy subjects were included. Electromyography was recorded from 14 shoulder girdle muscles as subjects performed shoulder flexion, scapula plane elevation, abduction and extension. Cross-correlation was used to examine the coordination between different muscles and muscle groups. Significantly higher coordination existed between the rotator cuff and deltoid muscle groups during the initial (Pearson Correlation Coefficient (PCC) = 0.79) and final (PCC = 0.74) stages of shoulder elevation compared to the mid-range (PCC = 0.34) (p = 0.020–0.035). Coordination between the deltoid and a functional adducting group comprising the latissimus dorsi and teres major was particularly high (PCC = 0.89) during early shoulder elevation. The destabilising force of the deltoid, during the initial stage of shoulder elevation, is balanced by the coordinated activity of the rotator cuff, latissimus dorsi and teres major. Stability requirements are lower during the mid-range of elevation. At the end-range of movement the demand for muscular stability again increases and higher coordination is seen between the deltoid and rotator cuff muscle groups. It is proposed that by appreciating the sophistication of normal shoulder function targeted evidence-based rehabilitation strategies for conditions such as subacromial impingement syndrome or shoulder instability can be developed.

]]>
<![CDATA[GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance]]> https://www.researchpad.co/article/5c59fee7d5eed0c484135792

Glutamate-gated chloride channel receptors (GluClRs) mediate inhibitory neurotransmission at invertebrate synapses and are primary targets of parasites that impact drastically on agriculture and human health. Ivermectin (IVM) is a broad-spectrum pesticide that binds and potentiates GluClR activity. Resistance to IVM is a major economic and health concern, but the molecular and synaptic mechanisms of resistance are ill-defined. Here we focus on GluClRs of the agricultural endoparasite, Haemonchus contortus. We demonstrate that IVM potentiates inhibitory input by inducing a tonic current that plateaus over 15 minutes and by enhancing post-synaptic current peak amplitude and decay times. We further demonstrate that IVM greatly enhances the active durations of single receptors. These effects are greatly attenuated when endogenous IVM-insensitive subunits are incorporated into GluClRs, suggesting a mechanism of IVM resistance that does not affect glutamate sensitivity. We discovered functional groups of IVM that contribute to tuning its potency at different isoforms and show that the dominant mode of access of IVM is via the cell membrane to the receptor.

]]>
<![CDATA[Non-cardiac chest pain patients in the emergency department: Do physicians have a plan how to diagnose and treat them? A retrospective study]]> https://www.researchpad.co/article/5c5df334d5eed0c484580ecd

Background

Non-cardiac chest pain is common and there is no formal recommendation on what diagnostic tests to use to identify underlying diseases after an acute coronary syndrome has been ruled out.

Objective

To evaluate the diagnostic tests, treatment recommendations and initiated treatments in patients presenting with non-cardiac chest pain to the emergency department (ED).

Methods

Single-center, retrospective medical chart review of patients presenting to the ED. Included were all medical records of patients aged 18 years and older presenting to the ED with chest pain and a non-cardiac discharge diagnosis between January 1, 2009 and December 31, 2011. Information on the diagnosis, diagnostic tests performed, treatment initiated and recommendation for further diagnostic testing or treatment were extracted. The primary outcomes of interest were the final diagnosis, diagnostic tests, and treatment recommendations. A formal ACS rule out testing was defined as serial three troponin testing.

Results

In total, 1341 ED admissions for non-cardiac chest pain (4.2% of all ED admissions) were analyzed. Non-specific chest pain remained the discharge diagnosis in 44.7% (n = 599). Identified underlying diseases included musculoskeletal chest pain (n = 602, 44.9%), pulmonary (n = 30, 2.2%), GI-tract (n = 35, 2.6%), or psychiatric diseases (n = 75, 5.6%). In 81.4% at least one troponin test and in 89% one ECG were performed. A formal ACS rule out troponin testing was performed in 9.2% (GI-tract disease 14.3%, non-specific chest pain 14.0%, pulmonary disease 10.0%, musculoskeletal chest pain 4.7%, and psychiatric disease 4.0%). Most frequently analgesics were prescribed (51%). A diagnostic test with proton pump inhibitor (PPI) was prescribed in 20% (mainly in gastrointestinal diseases). At discharge, over 72 different recommendations were given, ranging from no further measures to extensive cardiac evaluation.

Conclusion

In this retrospective study, a formal work-up to rule out ACS was found in a minority of patients presenting to the ED with chest pain of non-cardiac origin. A wide variation in diagnostic processes and treatment recommendations reflect the uncertainty of clinicians on how to approach patients after a cardiac cause was considered unlikely. Panic and anxiety disorders were rarely considered and a useful PPI treatment trial to diagnose gastroesophageal reflux disease was infrequently recommended.

]]>
<![CDATA[Enhancing activation in the right temporoparietal junction using theta-burst stimulation: Disambiguating between two hypotheses of top-down control of behavioral mimicry]]> https://www.researchpad.co/article/5c57e659d5eed0c484ef2cf5

Whereas previous research has focused on the role of the rTPJ when consciously inhibiting mimicry, we test the role of the rTPJ on mimicry within a social interaction, during which mimicking occurs nonconsciously. We wanted to determine whether higher rTPJ activation always inhibits the tendency to imitate (regardless of the context) or whether it facilitates mimicry during social interactions (when mimicking is an adaptive response). Participants received either active or sham intermittent theta-burst stimulation (iTBS: a type of stimulation that increases cortical activation) to the rTPJ. Next, we measured how much participants mimicked the hair and face touching of another person. Participants in the active stimulation condition engaged in significantly less mimicry than those in the sham stimulation condition. This finding suggests that even in a context in which mimicking is adaptive, rTPJ inhibits mimicry rather than facilitating it, supporting the hypothesis that rTPJ enhances representations of self over other regardless of the goals within a given context.

]]>
<![CDATA[Predicting neurological recovery with Canonical Autocorrelation Embeddings]]> https://www.researchpad.co/article/5c58d654d5eed0c484031bb6

Early prediction of the potential for neurological recovery after resuscitation from cardiac arrest is difficult but important. Currently, no clinical finding or combination of findings are sufficient to accurately predict or preclude favorable recovery of comatose patients in the first 24 to 48 hours after resuscitation. Thus, life-sustaining therapy is often continued for several days in patients whose irrecoverable injury is not yet recognized. Conversely, early withdrawal of life-sustaining therapy increases mortality among patients who otherwise might have gone on to recover. In this work, we present Canonical Autocorrelation Analysis (CAA) and Canonical Autocorrelation Embeddings (CAE), novel methods suitable for identifying complex patterns in high-resolution multivariate data often collected in highly monitored clinical environments such as intensive care units. CAE embeds sets of datapoints onto a space that characterizes their latent correlation structures and allows direct comparison of these structures through the use of a distance metric. The methodology may be particularly suitable when the unit of analysis is not just an individual datapoint but a dataset, as for instance in patients for whom physiological measures are recorded over time, and where changes of correlation patterns in these datasets are informative for the task at hand.

We present a proof of concept to illustrate the potential utility of CAE by applying it to characterize electroencephalographic recordings from 80 comatose survivors of cardiac arrest, aiming to identify patients who will survive to hospital discharge with favorable functional recovery. Our results show that with very low probability of making a Type 1 error, we are able to identify 32.5% of patients who are likely to have a good neurological outcome, some of whom have otherwise unfavorable clinical characteristics. Importantly, some of these had 5% predicted chance of favorable recovery based on initial illness severity measures alone. Providing this information to support clinical decision-making could motivate the continuation of life-sustaining therapies for these patients.

]]>
<![CDATA[Nitrogen gas produces less behavioural and neurophysiological excitation than carbon dioxide in mice undergoing euthanasia]]> https://www.researchpad.co/article/5c5ca2bcd5eed0c48441e9d5

Carbon dioxide (CO2) is one of the most commonly used gas euthanasia agents in mice, despite reports of aversion and nociception. Inert gases such as nitrogen (N2) may be a viable alternative to carbon dioxide. Here we compared behavioural and electrophysiological reactions to CO2 or N2 at either slow fill or rapid fill in C57Bl/6 mice undergoing gas euthanasia. We found that mice euthanised with CO2 increased locomotor activity compared to baseline, whereas mice exposed to N2 decreased locomotion. Furthermore, mice exposed to CO2 showed significantly more vertical jumps and freezing episodes than mice exposed to N2. We further found that CO2 exposure resulted in increased theta:delta of the EEG, a measure of excitation, whereas the N2 decreased theta:delta. Differences in responses were not oxygen-concentration dependent. Taken together, these results demonstrate that CO2 increases both behavioural and electrophysiological excitation as well as producing a fear response, whereas N2 reduces behavioural activity and central neurological depression and may be less aversive although still produces a fear response. Further studies are required to evaluate N2 as a suitable euthanasia agent for mice.

]]>