ResearchPad - electroporation https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in <i>Chlamydomonas reinhardtii</i>]]> https://www.researchpad.co/article/elastic_article_13864 Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.

]]>
<![CDATA[Generation of targeted homozygosity in the genome of human induced pluripotent stem cells]]> https://www.researchpad.co/article/Nc0b5af8d-f419-410c-9036-89fcaed1eba6

When loss of heterozygosity (LOH) is correlated with loss or gain of a disease phenotype, it is often necessary to identify which gene or genes are involved. Here, we developed a region-specific LOH-inducing system based on mitotic crossover in human induced pluripotent stem cells (hiPSCs). We first tested our system on chromosome 19. To detect homozygous clones generated by LOH, a positive selection cassette was inserted at the AASV1 locus of chromosome 19. LOHs were generated by the combination of allele-specific double-stranded DNA breaks introduced by CRISPR/Cas9 and suppression of Bloom syndrome (BLM) gene expression by the Tet-Off system. The BLM protein inhibitor ML216 exhibited a similar crossover efficiency and distribution of crossover sites. We next applied this system to the short arm of chromosome 6, where human leukocyte antigen (HLA) loci are located. Genotyping and flow cytometric analysis demonstrated that LOHs associated with chromosomal crossover occurred at the expected positions. Although careful examination of HLA-homozygous hiPSCs generated from parental cells is needed for cancer predisposition and effectiveness of differentiation, they may help to mitigate the current shortcoming of hiPSC-based transplantation related to the immunological differences between the donor and host.

]]>
<![CDATA[The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods]]> https://www.researchpad.co/article/5c75ac68d5eed0c484d08712

Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, with the view to performing subsequent CRISPR-Cas9 mediated genome editing. Plasmid vectors designed for nuclear transformation containing the chloramphenicol resistance gene under the control of the CaMV p35S promoter as well as several putative endogenous promoters were used to test a variety of transformation techniques including biolistics, electroporation and agitation with silicon carbide whiskers. Chloroplast-targeted transformation was attempted using an engineered Symbiodinium chloroplast minicircle encoding a modified PsbA protein expected to confer atrazine resistance. We report that we have been unable to confer chloramphenicol or atrazine resistance on Symbiodinium microadriaticum strain CCMP2467.

]]>
<![CDATA[Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi]]> https://www.researchpad.co/article/5c466535d5eed0c484517ffa

Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.

]]>
<![CDATA[CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells]]> https://www.researchpad.co/article/5c478caed5eed0c484bd3df4

Sickle Cell Disease and ß-thalassemia, which are caused by defective or deficient adult ß-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal ß-like globin, also known as 𝛾-globin, can ameliorate both disorders by serving in place of the adult ß-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential 𝛾-globin silencer region upstream of the δ-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated 𝛾-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases in 𝛾-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of 𝛾-globin. These data suggest that the 1.7 kb region is not an autonomous 𝛾-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of ß-hemoglobinopathies.

]]>
<![CDATA[ALG-2 participates in recovery of cells after plasma membrane damage by electroporation and digitonin treatment]]> https://www.researchpad.co/article/5bae98e640307c0c23a1c14c

The calcium binding protein ALG-2 is upregulated in several types of cancerous tissues and cancer cell death may be a consequence of ALG-2 downregulation. Novel research suggests that ALG-2 is involved in membrane repair mechanisms, in line with several published studies linking ALG-2 to processes of membrane remodeling and transport, which may contribute to the fitness of cells or protect them from damage. To investigate the involvement of ALG-2 in cell recovery after membrane damage we disrupted the PDCD6 gene encoding the ALG-2 protein in DT-40 cells and exposed them to electroporation. ALG-2 knock-out cells were more sensitive to electroporation as compared to wild type cells. This phenotype could be reversed by reestablishing ALG-2 expression confirming that ALG-2 plays an important role in cell recovery after plasma membrane damage. We found that overexpression of wild type ALG-2 but not a mutated form unable to bind Ca2+ partially protected HeLa cells from digitonin-induced cell death. Further, we were able to inhibit the cell protective function of ALG-2 after digitonin treatment by adding a peptide with the ALG-2 binding sequence of ALIX, which has been proposed to serve as the ALG-2 downstream target in a number of processes including cell membrane repair. Our results suggest that ALG-2 may serve as a novel therapeutic target in combination with membrane damaging interventions.

]]>
<![CDATA[From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model]]> https://www.researchpad.co/article/5989dabeab0ee8fa60bafde8

In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions.

]]>
<![CDATA[Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons]]> https://www.researchpad.co/article/5989da26ab0ee8fa60b80c8b

Long-term potentiation of inhibitory GABAergic transmission controls synaptic integration and action potential generation of specific neocortical neurons.

]]>
<![CDATA[Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus)]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6abdc

Principal neurons in the medial nucleus of the trapezoid body (MNTB) receive strong and temporally precise excitatory input from globular bushy cells in the cochlear nucleus through the calyx of Held. The extremely large synaptic currents produced by the calyx have sometimes led to the view of the MNTB as a simple relay synapse which converts incoming excitation to outgoing inhibition. However, electrophysiological and anatomical studies have shown the additional presence of inhibitory glycinergic currents that are large enough to suppress action potentials in MNTB neurons at least in some cases. The source(s) of glycinergic inhibition to MNTB are not fully understood. One major extrinsic source of glycinergic inhibitory input to MNTB is the ventral nucleus of the trapezoid body. However, it has been suggested that MNTB neurons receive additional inhibitory inputs via intrinsic connections (collaterals of glycinergic projections of MNTB neurons). While several authors have postulated their presence, these collaterals have never been examined in detail. Here we test the hypothesis that collaterals of MNTB principal cells provide glycinergic inhibition to the MNTB. We injected dye into single principal neurons in the MNTB, traced their projections, and immunohistochemically identified their synapses. We found that collaterals terminate within the MNTB and provide an additional source of inhibition to other principal cells, creating an inhibitory microcircuit within the MNTB. Only about a quarter to a third of MNTB neurons receive such collateral inputs. This microcircuit could produce side band inhibition and enhance frequency tuning of MNTB neurons, consistent with physiological observations.

]]>
<![CDATA[Functional Reorganization of the Default Mode Network across Chronic Pain Conditions]]> https://www.researchpad.co/article/5989dad3ab0ee8fa60bb707b

Chronic pain is associated with neuronal plasticity. Here we use resting-state functional magnetic resonance imaging to investigate functional changes in patients suffering from chronic back pain (CBP), complex regional pain syndrome (CRPS) and knee osteoarthritis (OA). We isolated five meaningful resting-state networks across the groups, of which only the default mode network (DMN) exhibited deviations from healthy controls. All patient groups showed decreased connectivity of medial prefrontal cortex (MPFC) to the posterior constituents of the DMN, and increased connectivity to the insular cortex in proportion to the intensity of pain. Multiple DMN regions, especially the MPFC, exhibited increased high frequency oscillations, conjoined with decreased phase locking with parietal regions involved in processing attention. Both phase and frequency changes correlated to pain duration in OA and CBP patients. Thus chronic pain seems to reorganize the dynamics of the DMN and as such reflect the maladaptive physiology of different types of chronic pain.

]]>
<![CDATA[Kisspeptins Modulate the Biology of Multiple Populations of Gonadotropin-Releasing Hormone Neurons during Embryogenesis and Adulthood in Zebrafish (Danio rerio)]]> https://www.researchpad.co/article/5989da21ab0ee8fa60b7f1a7

Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.

]]>
<![CDATA[Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia]]> https://www.researchpad.co/article/5989daacab0ee8fa60ba9a85

The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.

]]>
<![CDATA[Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells]]> https://www.researchpad.co/article/5989da1fab0ee8fa60b7e70f

The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

]]>
<![CDATA[Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0455

In the developing neocortex, cells in the ventricular/subventricular zone are largely multipotent neural stem cells and neural progenitor cells. These cells undergo self-renewal at the early stage of embryonic development to amplify the progenitor pool and subsequently differentiate into neurons. It is thus of considerable interest to investigate mechanisms controlling the switch from neural stem cells or neural progenitor cells to neurons. Here, we present evidence that Kif2a, a member of the Kinesin-13 family, plays a role in regulating the proliferation and differentiation of neural stem cells or neural progenitor cells at embryonic day 13.5. Silencing Kif2a by use of in utero electroporation of Kif2a shRNA reduced neural stem cells proliferation or self-renewal but increased neuronal differentiation. We further found that knockdown of Kif2a decreased the protein level of β-catenin, which is a critical molecule for neocortical neurogenesis. Together, these results reveal an important function of Kif2a in embryonic neocortical neurogenesis.

]]>
<![CDATA[Hand Function is Altered in Individuals with a History of Illicit Stimulant Use]]> https://www.researchpad.co/article/5989db4cab0ee8fa60bdaa08

Use of illicit stimulant drugs such as methamphetamine, cocaine, and ecstasy are a significant worldwide problem. However, little is known about the effect of these drugs on movement. The aim of the current study was to investigate hand function in adults with a history of illicit stimulant use. We hypothesized that prior use of illicit stimulant drugs is associated with abnormal manipulation of objects. The study involved 22 subjects with a history of illicit stimulant use (aged 29±8 yrs; time since last use: 1.8±4.0 yrs) and two control groups comprising 27 non-drug users (aged 25±8 yrs) and 17 cannabis users with no history of stimulant use (aged 22±5 yrs). Each subject completed screening tests (neuropsychological assessment, medical history questionnaire, lifetime drug history questionnaire, and urine drug screen) prior to gripping and lifting a light-weight object with the dominant right hand. Horizontal grip force, vertical lift force, acceleration, and first dorsal interosseus electromyographic (EMG) activity were recorded during three trials. In trial one, peak grip force was significantly greater in the stimulant group (12.8±3.9 N) than in the control groups (non-drug: 10.3±4.6 N; cannabis: 9.4±2.9 N, P<0.022). However, peak grip force did not differ between groups in trials two and three. The results suggest that individuals with a history of stimulant use overestimate the grip force required to manipulate a novel object but, are able to adapt grip force in subsequent lifts. The results suggest that movement dysfunction may be an unrecognized consequence of illicit stimulant use.

]]>
<![CDATA[Spontaneous Group Synchronization of Movements and Respiratory Rhythms]]> https://www.researchpad.co/article/5989db18ab0ee8fa60bcda1b

We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

]]>
<![CDATA[Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input]]> https://www.researchpad.co/article/5989dae7ab0ee8fa60bbdf73

An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs.

]]>
<![CDATA[The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport]]> https://www.researchpad.co/article/5989dac3ab0ee8fa60bb1722

Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.

]]>
<![CDATA[Electrical Stimulation over Bilateral Occipito-Temporal Regions Reduces N170 in the Right Hemisphere and the Composite Face Effect]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc0a29

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate cortical excitability. Although the clinical value of tDCS has been advocated, the potential of tDCS in cognitive rehabilitation of face processing deficits is less understood. Face processing has been associated with the occipito-temporal cortex (OT). The present study investigated whether face processing in healthy adults can be modulated by applying tDCS over the OT. Experiment 1 investigated whether tDCS can affect N170, a face-sensitive ERP component, with a face orientation judgment task. The N170 in the right hemisphere was reduced in active stimulation conditions compared with the sham stimulation condition for both upright faces and inverted faces. Experiment 2 further demonstrated that tDCS can modulate the composite face effect, a type of holistic processing that reflects the obligatory attention to all parts of a face. The composite face effect was reduced in active stimulation conditions compared with the sham stimulation condition. Additionally, the current polarity did not modulate the effect of tDCS in the two experiments. The present study demonstrates that N170 can be causally manipulated by stimulating the OT with weak currents. Furthermore, our study provides evidence that obligatory attention to all parts of a face can be affected by the commonly used tDCS parameter setting.

]]>
<![CDATA[Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI]]> https://www.researchpad.co/article/5989d9f7ab0ee8fa60b709db

Tinnitus is a percept of sound that is not related to an acoustic source outside the body. For many forms of tinnitus, mechanisms in the central nervous system are believed to play a role in the pathology. In this work we specifically assessed possible neural correlates of unilateral tinnitus. Functional magnetic resonance imaging (fMRI) was used to investigate differences in sound-evoked neural activity between controls, subjects with left-sided tinnitus, and subjects with right-sided tinnitus. We assessed connectivity patterns between auditory nuclei and the lateralization of the sound-evoked responses. Interestingly, these response characteristics did not relate to the laterality of tinnitus. The lateralization for left- or right ear stimuli, as expressed in a lateralization index, was considerably smaller in subjects with tinnitus compared to that in controls, reaching significance in the right primary auditory cortex (PAC) and the right inferior colliculus (IC). Reduced functional connectivity between the brainstem and the cortex was observed in subjects with tinnitus. These differences are consistent with two existing models that relate tinnitus to i) changes in the corticothalamic feedback loops or ii) reduced inhibitory effectiveness between the limbic system and the thalamus. The vermis of the cerebellum also responded to monaural sound in subjects with unilateral tinnitus. In contrast, no cerebellar response was observed in control subjects. This suggests the involvement of the vermis of the cerebellum in unilateral tinnitus.

]]>