ResearchPad - enzymes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Methamphetamine administration increases hepatic CYP1A2 but not CYP3A activity in female guinea pigs]]> https://www.researchpad.co/article/elastic_article_7848 Methamphetamine use has increased over the past decade and the first use of methamphetamine is most often when women are of reproductive age. Methamphetamine accumulates in the liver; however, little is known about the effect of methamphetamine use on hepatic drug metabolism. Methamphetamine was administered on 3 occassions to female Dunkin Hartley guinea pigs of reproductive age, mimicking recreational drug use. Low doses of test drugs caffeine and midazolam were administered after the third dose of methamphetamine to assess the functional activity of cytochrome P450 1A2 and 3A, respectively. Real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of factors involved in glucocorticoid signalling, inflammation, oxidative stress and drug transporters. This study showed that methamphetamine administration decreased hepatic CYP1A2 mRNA expression, but increased CYP1A2 enzyme activity. Methamphetamine had no effect on CYP3A enzyme activity. In addition, we found that methamphetamine may also result in changes in glucocorticoid bioavailability, as we found a decrease in 11β-hydroxysteroid dehydrogenase 1 mRNA expression, which converts inactive cortisone into active cortisol. This study has shown that methamphetamine administration has the potential to alter drug metabolism via the CYP1A2 metabolic pathway in female guinea pigs. This may have clinical implications for drug dosing in female methamphetamine users of reproductive age.

]]>
<![CDATA[ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient <i>hsdRMS</i> restriction system broadening conjugation host range]]> https://www.researchpad.co/article/elastic_article_7739 Horizontal gene transfer is the main mechanism by which bacteria acquire and disseminate new traits, such as antibiotic resistance genes, that allow adaptation and evolution. Here we identified a gene, ardC, that enables a plasmid to increase its conjugative host range, and thus positively contributes to plasmid fitness. The crystal structure of the antirestriction protein ArdC revealed a fold different from other antirestriction proteins. Our results have wide implications for understanding how a gene enlarges the environments a plasmid can colonize and point to new targets to harness the bacterial DNA uptake control.

]]>
<![CDATA[Allosteric coupling between Mn<sup>2+</sup> and dsDNA controls the catalytic efficiency and fidelity of cGAS]]> https://www.researchpad.co/article/N3f2672b7-a325-4f10-9f7b-2dfec0dba4e2 Cyclic-G/AMP (cGAMP) synthase (cGAS) triggers host innate immune responses against cytosolic double-stranded (ds)DNA arising from genotoxic stress and pathogen invasion. The canonical activation mechanism of cGAS entails dsDNA-binding and dimerization. Here, we report an unexpected activation mechanism of cGAS in which Mn2+ activates monomeric cGAS without dsDNA. Importantly, the Mn2+-mediated activation positively couples with dsDNA-dependent activation in a concerted manner. Moreover, the positive coupling between Mn2+ and dsDNA length-dependent activation requires the cognate ATP/GTP substrate pair, while negative-cooperativity suppresses Mn2+ utilization by either ATP or GTP alone. Additionally, while Mn2+ accelerates the overall catalytic activity, dsDNA length-dependent dimerization specifically accelerates the cyclization of cGAMP. Together, we demonstrate how the intrinsic allostery of cGAS efficiently yet precisely tunes its activity.

]]>
<![CDATA[Mechanistic insights from structure of <i>Mycobacterium smegmatis</i> topoisomerase I with ssDNA bound to both N- and C-terminal domains]]> https://www.researchpad.co/article/N81f0f89e-d181-4a22-8bf4-647dd2bf180d Type IA topoisomerases interact with G-strand and T-strand ssDNA to regulate DNA topology. However, simultaneous binding of two ssDNA segments to a type IA topoisomerase has not been observed previously. We report here the crystal structure of a type IA topoisomerase with ssDNA segments bound in opposite polarity to the N- and C-terminal domains. Titration of small ssDNA oligonucleotides to Mycobacterium smegmatis topoisomerase I with progressive C-terminal deletions showed that the C-terminal region has higher affinity for ssDNA than the N-terminal active site. This allows the C-terminal domains to capture one strand of underwound negatively supercoiled DNA substrate first and position the N-terminal domains to bind and cleave the opposite strand in the relaxation reaction. Efficiency of negative supercoiling relaxation increases with the number of domains that bind ssDNA primarily with conserved aromatic residues and possibly with assistance from polar/basic residues. A comparison of bacterial topoisomerase I structures showed that a conserved transesterification unit (N-terminal toroid structure) for cutting and rejoining of a ssDNA strand can be combined with two different types of C-terminal ssDNA binding domains to form diverse bacterial topoisomerase I enzymes that are highly efficient in their physiological role of preventing excess negative supercoiling in the genome.

]]>
<![CDATA[A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0154

Protrusion and retraction of lamellipodia are common features of eukaryotic cell motility. As a cell migrates through its extracellular matrix (ECM), lamellipod growth increases cell-ECM contact area and enhances engagement of integrin receptors, locally amplifying ECM input to internal signaling cascades. In contrast, contraction of lamellipodia results in reduced integrin engagement that dampens the level of ECM-induced signaling. These changes in cell shape are both influenced by, and feed back onto ECM signaling. Motivated by experimental observations on melanoma cells lines (1205Lu and SBcl2) migrating on fibronectin (FN) coated topographic substrates (anisotropic post-density arrays), we probe this interplay between intracellular and ECM signaling. Experimentally, cells exhibited one of three lamellipodial dynamics: persistently polarized, random, or oscillatory, with competing lamellipodia oscillating out of phase (Park et al., 2017). Pharmacological treatments, changes in FN density, and substrate topography all affected the fraction of cells exhibiting these behaviours. We use these observations as constraints to test a sequence of hypotheses for how intracellular (GTPase) and ECM signaling jointly regulate lamellipodial dynamics. The models encoding these hypotheses are predicated on mutually antagonistic Rac-Rho signaling, Rac-mediated protrusion (via activation of Arp2/3 actin nucleation) and Rho-mediated contraction (via ROCK phosphorylation of myosin light chain), which are coupled to ECM signaling that is modulated by protrusion/contraction. By testing each model against experimental observations, we identify how the signaling layers interact to generate the diverse range of cell behaviors, and how various molecular perturbations and changes in ECM signaling modulate the fraction of cells exhibiting each. We identify several factors that play distinct but critical roles in generating the observed dynamic: (1) competition between lamellipodia for shared pools of Rac and Rho, (2) activation of RhoA by ECM signaling, and (3) feedback from lamellipodial growth or contraction to cell-ECM contact area and therefore to the ECM signaling level.

]]>
<![CDATA[Spermidine biases the resolution of Holliday junctions by phage λ integrase]]> https://www.researchpad.co/article/5b7c3a19463d7e0e8f16b9a6

Holliday junctions are a central intermediate in diverse pathways of DNA repair and recombination. The isomerization of a junction determines the directionality of the recombination event. Previous studies have shown that the identity of the central sequence of the junction may favor one of the two isomers, in turn controlling the direction of the pathway. Here we demonstrate that, in the absence of DNA sequence-mediated isomer preference, polycations are the major contributor to biasing strand cleavage during junction resolution. In the case of wild-type phage λ excision junctions, spermidine plays the dominant role in controlling the isomerization state of the junction and increases the rate of junction resolution. Spermidine also counteracts the sequence-imposed bias on resolution. The spermidine-induced bias is seen equally on supercoiled and linear excisive recombination junction intermediates, and thus is not just an artefact of in vitro recombination conditions. The contribution of spermidine requires the presence of accessory factors, and results in the repositioning of Int's core-binding domains on junctions, perhaps due to DNA-spermidine–protein interactions, or by influencing DNA conformation in the core region. Our results lead us to propose that spermidine together with accessory factors promotes the formation of the second junction isomer. We propose that this rearrangement triggers the activation of the second pair of Int active sites necessary to resolve Holliday junctions during phage λ Int-mediated recombination.

]]>
<![CDATA[The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases]]> https://www.researchpad.co/article/598bdfb5fa495b7488185485

Infection by enveloped coronaviruses (CoVs) initiates with viral spike (S) proteins binding to cellular receptors, and is followed by proteolytic cleavage of receptor-bound S proteins, which prompts S protein-mediated virus-cell membrane fusion. Infection therefore requires close proximity of receptors and proteases. We considered whether tetraspanins, scaffolding proteins known to facilitate CoV infections, hold receptors and proteases together on cell membranes. Using knockout cell lines, we found that the tetraspanin CD9, but not the tetraspanin CD81, formed cell-surface complexes of dipeptidyl peptidase 4 (DPP4), the MERS-CoV receptor, and the type II transmembrane serine protease (TTSP) member TMPRSS2, a CoV-activating protease. This CD9-facilitated condensation of receptors and proteases allowed MERS-CoV pseudoviruses to enter cells rapidly and efficiently. Without CD9, MERS-CoV viruses were not activated by TTSPs, and they trafficked into endosomes to be cleaved much later and less efficiently by cathepsins. Thus, we identified DPP4:CD9:TTSP as the protein complexes necessary for early, efficient MERS-CoV entry. To evaluate the importance of these complexes in an in vivo CoV infection model, we used recombinant Adenovirus 5 (rAd5) vectors to express human DPP4 in mouse lungs, thereby sensitizing the animals to MERS-CoV infection. When the rAd5-hDPP4 vectors co-expressed small RNAs silencing Cd9 or Tmprss2, the animals were significantly less susceptible, indicating that CD9 and TMPRSS2 facilitated robust in vivo MERS-CoV infection of mouse lungs. Furthermore, the S proteins of virulent mouse-adapted MERS-CoVs acquired a CD9-dependent cell entry character, suggesting that CD9 is a selective agent in the evolution of CoV virulence.

]]>
<![CDATA[Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis]]> https://www.researchpad.co/article/N4009e20f-330a-49f1-8a3f-309ba227a41c

Alternative splicing (AS) of pre-mRNAs in plants is an important mechanism of gene regulation in environmental stress tolerance but plant signals involved are essentially unknown. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is mediated by mitogen-activated protein kinases and the majority of PTI defense genes are regulated by MPK3, MPK4 and MPK6. These responses have been mainly analyzed at the transcriptional level, however many splicing factors are direct targets of MAPKs. Here, we studied alternative splicing induced by the PAMP flagellin in Arabidopsis. We identified 506 PAMP-induced differentially alternatively spliced (DAS) genes. Importantly, of the 506 PAMP-induced DAS genes, only 89 overlap with the set of 1950 PAMP-induced differentially expressed genes (DEG), indicating that transcriptome analysis does not identify most DAS events. Global DAS analysis of mpk3, mpk4, and mpk6 mutants in the absence of PAMP treatment showed no major splicing changes. However, in contrast to MPK3 and MPK6, MPK4 was found to be a key regulator of PAMP-induced DAS events as the AS of a number of splicing factors and immunity-related protein kinases is affected, such as the calcium-dependent protein kinase CPK28, the cysteine-rich receptor like kinases CRK13 and CRK29 or the FLS2 co-receptor SERK4/BKK1. Although MPK4 is guarded by SUMM2 and consequently, the mpk4 dwarf and DEG phenotypes are suppressed in mpk4 summ2 mutants, MPK4-dependent DAS is not suppressed by SUMM2, supporting the notion that PAMP-triggered MPK4 activation mediates regulation of alternative splicing.

]]>
<![CDATA[Citrate lyase CitE in Mycobacterium tuberculosis contributes to mycobacterial survival under hypoxic conditions]]> https://www.researchpad.co/article/N5c16b8fb-2363-48af-bce8-dbbca8329b25

Mycobacterium tuberculosis is the causative agent of tuberculosis and has evolved an ability to survive in hostile host environments. M. tuberculosis is thought to utilize the rTCA cycle to sustain its latent growth during infection, but the enzymatic characteristics and physiological function for the key citrate lyase of the rTCA cycle, MtbCitE, in the important pathogen remain unclear. In this study, we investigated the function of MtbCitE based on its structural properties and sequence comparisons with other bacterial citrate lyase subunits. We showed that several amino acid residues were important for the citrate cleavage activity of MtbCitE. Strikingly, the citrate cleavage activity of MtbCitE was inhibited by ATP, indicating that energy metabolism might couple with the regulation of MtbCitE activity, which differed from other CitEs. More interestingly, deletion of citE from Mycobacterium bovis BCG decreased the mycobacterial survival rate under hypoxic conditions, whereas complementation with citE restored the phenotype to wild-type levels. Consistently, three key rTCA cycle enzymes were positively regulated under hypoxic conditions in mycobacteria. Therefore, we characterized a unique citrate lyase MtbCitE from M. tuberculosis and found that the CitE protein significantly contributed to mycobacterial survival under hypoxic conditions.

]]>
<![CDATA[Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model]]> https://www.researchpad.co/article/N537496c4-2c39-41e6-9ca3-002a318b88b6

Background

Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion.

Purpose

This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons.

Study design

Controlled laboratory study

Methods

Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection.

Results

Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM).

Conclusion

Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery.

Clinical relevance

This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.

]]>
<![CDATA[Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase]]> https://www.researchpad.co/article/Nc02a6159-67c3-47cb-8c4e-6edb769c83f6

Abstract

The hexametric T7 helicase (gp4) adopts a spiral lock-washer form and encircles a coil-like DNA (tracking) strand with two nucleotides bound to each subunit. However, the chemo-mechanical coupling mechanism in unwinding has yet to be elucidated. Here, we utilized nanotensioner-enhanced Förster resonance energy transfer with one nucleotide precision to investigate gp4-induced unwinding of DNA that contains an abasic lesion. We observed that the DNA unwinding activity of gp4 is hindered but not completely blocked by abasic lesions. Gp4 moves back and forth repeatedly when it encounters an abasic lesion, whereas it steps back only occasionally when it unwinds normal DNA. We further observed that gp4 translocates on the tracking strand in step sizes of one to four nucleotides. We propose that a hypothetical intermediate conformation of the gp4–DNA complex during DNA unwinding can help explain how gp4 molecules pass lesions, providing insights into the unwinding dynamics of gp4.

]]>
<![CDATA[The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development]]> https://www.researchpad.co/article/N6f3e167d-06e3-4298-8b5d-db0efb6a4fd7

Abstract

Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.

]]>
<![CDATA[Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO–POL enzyme]]> https://www.researchpad.co/article/Nade28d27-54ad-44a7-b13c-c658052934da

Abstract

Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5′ exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3′-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain—especially the O helix—to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3′ exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO–POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.

]]>
<![CDATA[Molecular basis for t6A modification in human mitochondria]]> https://www.researchpad.co/article/N4d054181-125a-4a93-8ab8-9c07ed550c93

Abstract

N 6-Threonylcarbamoyladenosine (t6A) is a universal tRNA modification essential for translational accuracy and fidelity. In human mitochondria, YrdC synthesises an l-threonylcarbamoyl adenylate (TC-AMP) intermediate, and OSGEPL1 transfers the TC-moiety to five tRNAs, including human mitochondrial tRNAThr (hmtRNAThr). Mutation of hmtRNAs, YrdC and OSGEPL1, affecting efficient t6A modification, has been implicated in various human diseases. However, little is known about the tRNA recognition mechanism in t6A formation in human mitochondria. Herein, we showed that OSGEPL1 is a monomer and is unique in utilising C34 as an anti-determinant by studying the contributions of individual bases in the anticodon loop of hmtRNAThr to t6A modification. OSGEPL1 activity was greatly enhanced by introducing G38A in hmtRNAIle or the A28:U42 base pair in a chimeric tRNA containing the anticodon stem of hmtRNASer(AGY), suggesting that sequences of specific hmtRNAs are fine-tuned for different modification levels. Moreover, using purified OSGEPL1, we identified multiple acetylation sites, and OSGEPL1 activity was readily affected by acetylation via multiple mechanisms in vitro and in vivo. Collectively, we systematically elucidated the nucleotide requirement in the anticodon loop of hmtRNAs, and revealed mechanisms involving tRNA sequence optimisation and post-translational protein modification that determine t6A modification levels.

]]>
<![CDATA[The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor]]> https://www.researchpad.co/article/N9c68dafe-8085-49c3-bdf9-1a203e11c530

Abstract

The human Microprocessor complex cleaves primary microRNA (miRNA) transcripts (pri-miRNAs) to initiate miRNA synthesis. Microprocessor consists of DROSHA (an RNase III enzyme), and DGCR8. DROSHA contains two RNase III domains, RIIIDa and RIIIDb, which simultaneously cleave the 3p- and 5p-strands of pri-miRNAs, respectively. In this study, we show that the internal loop located in the lower stem of numerous pri-miRNAs selectively inhibits the cleavage of Microprocessor on their 3p-strand, thereby, facilitating the single cleavage on their 5p-strand. This single cleavage does not lead to the production of miRNA but instead, it downregulates miRNA expression. We also demonstrate that by manipulating the size of the internal loop in the lower stem of pri-miRNAs, we can alter the ratio of single-cut to double-cut products resulted from the catalysis of Microprocessor, thus changing miRNA production in the in vitro pri-miRNA processing assays and in human cells. Therefore, the oscillating level of the single cleavage suggests another way of regulation of miRNA expression and offers an alternative approach to miRNA knockdown.

]]>
<![CDATA[Activity-dependent switches between dynamic regimes of extracellular matrix expression]]> https://www.researchpad.co/article/Ndfacbadd-d1b4-4759-ab64-7c15dc34928b

Experimental studies highlight the important role of the extracellular matrix (ECM) in the regulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn, the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-called critical period of neural development, stabilizing the efficient configurations of neural networks in the brain. ECM is locally remodeled by proteases secreted and activated in an activity-dependent manner into the extracellular space and this process is important for physiological synaptic plasticity. We ask if ECM remodeling may be exaggerated under pathological conditions and enable activity-dependent switches between different regimes of ECM expression. We consider an analytical model based on known mechanisms of interaction between neuronal activity and expression of ECM, ECM receptors and ECM degrading proteases. We demonstrate that either inhibitory or excitatory influence of ECM on neuronal activity may lead to the bistability of ECM expression, so two stable stationary states are observed. Noteworthy, only in the case when ECM has predominant inhibitory influence on neurons, the bistability is dependent on the activity of proteases. Excitatory ECM-neuron feedback influences may also result in spontaneous oscillations of ECM expression, which may coexist with a stable stationary state. Thus, ECM-neuronal interactions support switches between distinct dynamic regimes of ECM expression, possibly representing transitions into disease states associated with remodeling of brain ECM.

]]>
<![CDATA[Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation]]> https://www.researchpad.co/article/Na0a913dc-a63b-43c4-adc6-448aab832714

It is known that the non-structural protein (NSs) of Toscana virus (TOSV), an emergent sandfly-borne virus causing meningitis or more severe central nervous system injuries in humans, exerts its function triggering RIG-I for degradation in a proteasome-dependent manner, thus breaking off the IFN-β production. The non-structural protein of different members of Bunyavirales has recently appeared as a fundamental protagonist in immunity evasion through ubiquitination-mediated protein degradation targets. We showed that TOSV NSs has an E3 ubiquitin ligase activity, mapping at the carboxy-terminal domain and also involving the amino-terminal of the protein. Indeed, neither the amino- (NSsΔN) nor the carboxy- (NSsΔC) terminal-deleted mutants of TOSV NSs were able to cause ubiquitin-mediated proteasome degradation of RIG-I. Moreover, the addition of the C-terminus of TOSV NSs to the homologous protein of the Sandfly Fever Naples Virus, belonging to the same genus and unable to inhibit IFN-β activity, conferred new properties to this protein, favoring RIG-I ubiquitination and its degradation. NSs lost its antagonistic activity to IFN when one of the terminal residues was missing. Therefore, we showed that NSs could behave as an atypical RING between RING (RBR) E3 ubiquitin ligases. This is the first report which identified the E3 ubiquitin ligase activity in a viral protein among negative strand RNA viruses.

]]>
<![CDATA[Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns]]> https://www.researchpad.co/article/N16606f40-b139-4629-a88c-130cf8eb8313

Abstract

Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3′ side of the CpG site, where they resemble DNMT3B, while 5′ flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.

]]>
<![CDATA[Ring-shaped replicative helicase encircles double-stranded DNA during unwinding]]> https://www.researchpad.co/article/N0acbc566-46fb-4686-99a1-418aa63bcf7d

Abstract

Ring-shaped replicative helicases are hexameric and play a key role in cellular DNA replication. Despite their importance, our understanding of the unwinding mechanism of replicative helicases is far from perfect. Bovine papillomavirus E1 is one of the best-known model systems for replicative helicases. E1 is a multifunctional initiator that senses and melts the viral origin and unwinds DNA. Here, we study the unwinding mechanism of E1 at the single-molecule level using magnetic tweezers. The result reveals that E1 as a single hexamer is a poorly processive helicase with a low unwinding rate. Tension on the DNA strands impedes unwinding, indicating that the helicase interacts strongly with both DNA strands at the junction. While investigating the interaction at a high force (26–30 pN), we discovered that E1 encircles dsDNA. By comparing with the E1 construct without a DNA binding domain, we propose two possible encircling modes of E1 during active unwinding.

]]>
<![CDATA[A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli]]> https://www.researchpad.co/article/Nb7ff2f9f-5c03-435b-b37d-b52dab6c46d4

Monoclonal antibodies (mABs) are of great biopharmaceutical importance for the diagnosis and treatment of diseases. However, their production in mammalian expression hosts usually requires extensive production times and is expensive. Escherichia coli has become a new platform for production of functional small antibody fragment variants. In this study, we have used a rhamnose-inducible expression system that allows precise control of protein expression levels. The system was first evaluated for the cytoplasmic production of super folder green fluorescence protein (sfGFP) in various production platforms and then for the periplasmic production of the anti-HIV single-chain variable antibody fragment (scFv) of PGT135. Anti-HIV broadly neutralizing antibodies, like PGT135, have potential for clinical use to prevent HIV transmission, to promote immune responses and to eradicate infected cells. Different concentrations of L-rhamnose resulted in the controlled production of both sfGFP and scFv PGT135 antibody. In addition, by optimizing the culture conditions, the amount of scFv PGT135 antibody that was expressed soluble or as inclusions bodies could be modulated. The proteins were produced in batch bioreactors, with yields of 4.9 g/L for sfGFP and 0.8 g/L for scFv. The functionality of the purified antibodies was demonstrated by their ability to neutralize a panel of different HIV variants in vitro. We expect that this expression system will prove very useful for the development of a more cost-effective production process for proteins and antibody fragments in microbial cells.

Electronic supplementary material

The online version of this article (10.1007/s00253-019-10145-1) contains supplementary material, which is available to authorized users.

]]>