ResearchPad - epilepsy https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Design of composite measure schemes for comparative severity assessment in animal-based neuroscience research: A case study focussed on rat epilepsy models]]> https://www.researchpad.co/article/elastic_article_14687 Comparative severity assessment of animal models and experimental interventions is of utmost relevance for harm-benefit analysis during ethical evaluation, an animal welfare-based model prioritization as well as the validation of refinement measures. Unfortunately, there is a lack of evidence-based approaches to grade an animal’s burden in a sensitive, robust, precise, and objective manner. Particular challenges need to be considered in the context of animal-based neuroscientific research because models of neurological disorders can be characterized by relevant changes in the affective state of an animal. Here, we report about an approach for parameter selection and development of a composite measure scheme designed for precise analysis of the distress of animals in a specific model category. Data sets from the analysis of several behavioral and biochemical parameters in three different epilepsy models were subjected to a principal component analysis to select the most informative parameters. The top-ranking parameters included burrowing, open field locomotion, social interaction, and saccharin preference. These were combined to create a composite measure scheme (CMS). CMS data were subjected to cluster analysis enabling the allocation of severity levels to individual animals. The results provided information for a direct comparison between models indicating a comparable severity of the electrical and chemical post-status epilepticus models, and a lower severity of the kindling model. The new CMS can be directly applied for comparison of other rat models with seizure activity or for assessment of novel refinement approaches in the respective research field. The respective online tool for direct application of the CMS or for creating a new CMS based on other parameters from different models is available at https://github.com/mytalbot/cms. However, the robustness and generalizability needs to be further assessed in future studies. More importantly, our concept of parameter selection can serve as a practice example providing the basis for comparable approaches applicable to the development and validation of CMS for all kinds of disease models or interventions.

]]>
<![CDATA[Resting state networks of the canine brain under sevoflurane anaesthesia]]> https://www.researchpad.co/article/N0f88adec-494f-4799-9601-5a30499e23df

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has become an established technique in humans and reliably determines several resting state networks (RSNs) simultaneously. Limited data exist about RSN in dogs. The aim of this study was to investigate the RSNs in 10 healthy beagle dogs using a 3 tesla MRI scanner and subsequently perform group-level independent component analysis (ICA) to identify functionally connected brain networks. Rs-fMRI sequences were performed under steady state sevoflurane inhalation anaesthesia. Anaesthetic depth was titrated to the minimum level needed for immobilisation and mechanical ventilation of the patient. This required a sevoflurane MAC between 0.8 to 1.2. Group-level ICA dimensionality of 20 components revealed distributed sensory, motor and higher-order networks in the dogs’ brain. We identified in total 7 RSNs (default mode, primary and higher order visual, auditory, two putative motor-somatosensory and one putative somatosensory), which are common to other mammals including humans. Identified RSN are remarkably similar to those identified in awake dogs. This study proves the feasibility of rs-fMRI in anesthetized dogs and describes several RSNs, which may set the basis for investigating pathophysiological characteristics of various canine brain diseases.

]]>
<![CDATA[Ivermectin as an adjuvant to anti-epileptic treatment in persons with onchocerciasis-associated epilepsy: A randomized proof-of-concept clinical trial]]> https://www.researchpad.co/article/N2a703e18-6320-408f-bd4d-1f677396d877

Introduction

Recent findings from onchocerciasis-endemic foci uphold that increasing ivermectin coverage reduces the epilepsy incidence, and anecdotal evidence suggests seizure frequency reduction in persons with onchocerciasis-associated epilepsy, when treated with ivermectin. We conducted a randomized clinical trial to assess whether ivermectin treatment decreases seizure frequency.

Methods

A proof-of-concept randomized clinical trial was conducted in the Logo health zone in the Ituri province, Democratic Republic of Congo, to compare seizure frequencies in onchocerciasis-infected persons with epilepsy (PWE) randomized to one of two treatment arms: the anti-epileptic drug phenobarbital supplemented with ivermectin, versus phenobarbital alone. The primary endpoint was defined as the probability of being seizure-free at month 4. A secondary endpoint was defined as >50% reduction in seizure frequency at month 4, compared to baseline. Both endpoints were analyzed using multiple logistic regression. In longitudinal analysis, the probability of seizure freedom during the follow-up period was assessed for both treatment arms by fitting a logistic regression model using generalized estimating equations (GEE).

Results

Ninety PWE enrolled between October and November 2017 were eligible for analysis. A multiple logistic regression analysis showed a borderline association between ivermectin treatment and being seizure-free at month 4 (OR: 1.652, 95% CI 0.975–2.799; p = 0.062). There was no significant difference in the probability of experiencing >50% reduction of the seizure frequency at month 4 between the two treatment arms. Also, treatment with ivermectin did not significantly increase the odds of being seizure-free during the individual follow-up visits.

Conclusion

Whether ivermectin has an added value in reducing the frequency of seizures in PWE treated with AED remains to be determined. A larger study in persons with OAE on a stable AED regimen and in persons with recent epilepsy onset should be considered to further investigate the potential beneficial effect of ivermectin treatment in persons with OAE.

Trial registration

Registration: www.clinicaltrials.gov; NCT03052998.

]]>
<![CDATA[Normalization enhances brain network features that predict individual intelligence in children with epilepsy]]> https://www.researchpad.co/article/5c8823aad5eed0c484638dcf

Background and purpose

Architecture of the cerebral network has been shown to associate with IQ in children with epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing network analyses for the benefit of children with epilepsy, has yet to be achieved. We compared two network normalization strategies in terms of their ability to optimize subject-level inferences on the relationship between brain network architecture and brain function.

Materials and methods

Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network nodes were defined by anatomic parcellation, first in patient space (nodes defined for each patient) and again in template space (same nodes for all patients). Whole-brain weighted graphs were constructed according to pair-wise correlation of BOLD-signal time courses between nodes. The following metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global efficiency. Metrics computed on graphs in patient space were normalized to the same metric computed on a random network of identical size. A machine learning algorithm was used to predict patient IQ given access to only the network metrics.

Results

Twenty-seven patients (8–18 years) comprised the final study group. All brain networks demonstrated expected small world properties. Accounting for intrinsic population heterogeneity had a significant effect on prediction accuracy. Specifically, transformation of all patients into a common standard space as well as normalization of metrics to those computed on a random network both substantially outperformed the use of non-normalized metrics.

Conclusion

Normalization contributed significantly to accurate subject-level prediction of cognitive function in children with epilepsy. These findings support the potential for quantitative network approaches to contribute clinically meaningful information in children with neurological disorders.

]]>
<![CDATA[Controlling seizure propagation in large-scale brain networks]]> https://www.researchpad.co/article/5c7d95e6d5eed0c484734f24

Information transmission in the human brain is a fundamentally dynamic network process. In partial epilepsy, this process is perturbed and highly synchronous seizures originate in a local network, the so-called epileptogenic zone (EZ), before recruiting other close or distant brain regions. We studied patient-specific brain network models of 15 drug-resistant epilepsy patients with implanted stereotactic electroencephalography (SEEG) electrodes. Each personalized brain model was derived from structural data of magnetic resonance imaging (MRI) and diffusion tensor weighted imaging (DTI), comprising 88 nodes equipped with region specific neural mass models capable of demonstrating a range of epileptiform discharges. Each patient’s virtual brain was further personalized through the integration of the clinically hypothesized EZ. Subsequent simulations and connectivity modulations were performed and uncovered a finite repertoire of seizure propagation patterns. Across patients, we found that (i) patient-specific network connectivity is predictive for the subsequent seizure propagation pattern; (ii) seizure propagation is characterized by a systematic sequence of brain states; (iii) propagation can be controlled by an optimal intervention on the connectivity matrix; (iv) the degree of invasiveness can be significantly reduced via the proposed seizure control as compared to traditional resective surgery. To stop seizures, neurosurgeons typically resect the EZ completely. We showed that stability analysis of the network dynamics, employing structural and dynamical information, estimates reliably the spatiotemporal properties of seizure propagation. This suggests novel less invasive paradigms of surgical interventions to treat and manage partial epilepsy.

]]>
<![CDATA[Community-, facility-, and individual-level outcomes of a district mental healthcare plan in a low-resource setting in Nepal: A population-based evaluation]]> https://www.researchpad.co/article/5c6f148bd5eed0c48467a299

Background

In low-income countries, care for people with mental, neurological, and substance use (MNS) disorders is largely absent, especially in rural settings. To increase treatment coverage, integration of mental health services into community and primary healthcare settings is recommended. While this strategy is being rolled out globally, rigorous evaluation of outcomes at each stage of the service delivery pathway from detection to treatment initiation to individual outcomes of care has been missing.

Methods and findings

A combination of methods were employed to evaluate the impact of a district mental healthcare plan for depression, psychosis, alcohol use disorder (AUD), and epilepsy as part of the Programme for Improving Mental Health Care (PRIME) in Chitwan District, Nepal. We evaluated 4 components of the service delivery pathway: (1) contact coverage of primary care mental health services, evaluated through a community study (N = 3,482 combined for all waves of community surveys) and through service utilisation data (N = 727); (2) detection of mental illness among participants presenting in primary care facilities, evaluated through a facility study (N = 3,627 combined for all waves of facility surveys); (3) initiation of minimally adequate treatment after diagnosis, evaluated through the same facility study; and (4) treatment outcomes of patients receiving primary-care-based mental health services, evaluated through cohort studies (total N = 449 depression, N = 137; AUD, N = 175; psychosis, N = 95; epilepsy, N = 42). The lack of structured diagnostic assessments (instead of screening tools), the relatively small sample size for some study components, and the uncontrolled nature of the study are among the limitations to be noted. All data collection took place between 15 January 2013 and 15 February 2017. Contact coverage increased 7.5% for AUD (from 0% at baseline), 12.2% for depression (from 0%), 11.7% for epilepsy (from 1.3%), and 50.2% for psychosis (from 3.2%) when using service utilisation data over 12 months; community survey results did not reveal significant changes over time. Health worker detection of depression increased by 15.7% (from 8.9% to 24.6%) 6 months after training, and 10.3% (from 8.9% to 19.2%) 24 months after training; for AUD the increase was 58.9% (from 1.1% to 60.0%) and 11.0% (from 1.1% to 12.1%) for 6 months and 24 months, respectively. Provision of minimally adequate treatment subsequent to diagnosis for depression was 93.9% at 6 months and 66.7% at 24 months; for AUD these values were 95.1% and 75.0%, respectively. Changes in treatment outcomes demonstrated small to moderate effect sizes (9.7-point reduction [d = 0.34] in AUD symptoms, 6.4-point reduction [d = 0.43] in psychosis symptoms, 7.2-point reduction [d = 0.58] in depression symptoms) at 12 months post-treatment.

Conclusions

These combined results make a promising case for the feasibility and impact of community- and primary-care-based services delivered through an integrated district mental healthcare plan in reducing the treatment gap and increasing effective coverage for MNS disorders. While the integrated mental healthcare approach does lead to apparent benefits in most of the outcome metrics, there are still significant areas that require further attention (e.g., no change in community-level contact coverage, attrition in AUD detection rates over time, and relatively low detection rates for depression).

]]>
<![CDATA[Associations between use of macrolide antibiotics during pregnancy and adverse child outcomes: A systematic review and meta-analysis]]> https://www.researchpad.co/article/5c75abfad5eed0c484d07f62

Background

Evidence on adverse effects of maternal macrolide use during pregnancy is inconsistent. We conducted a systematic review and meta-analysis to investigate the association between macrolide use during pregnancy and adverse fetal and child outcomes.

Methods and findings

We included observational studies and randomised controlled trials (RCTs) that recorded macrolide use during pregnancy and child outcomes. We prioritized comparisons of macrolides with alternative antibiotics (mainly penicillins or cephalosporins) for comparability of indication and effect. Random effects meta-analysis was used to derive pooled odds ratios (OR) for each outcome. Subgroup analyses were performed according to specific types (generic forms) of macrolide.

Of 11,186 citations identified, 19 (10 observational, 9 RCTs) studies were included (21 articles including 228,556 participants). Macrolide prescribing during pregnancy was associated with an increased risk of miscarriage (pooled ORobs 1·82, 95% CI 1·57–2·11, three studies, I2 = 0%), cerebral palsy and/or epilepsy (ORobs 1·78, 1·18–2·69; one study), epilepsy alone (ORobs 2·02, 1·30–3·14, one study; ORRCT 1.03, 0.79–1.35, two studies), and gastrointestinal malformations (ORobs 1·56, 1·05–2·32, two studies) compared with alternative antibiotics. We found no evidence of an adverse effect on 12 other malformations, stillbirth, or neonatal death. Results were robust to excluding studies with high risk of bias.

Conclusions

Consistent evidence of an increased risk of miscarriage in observational studies and uncertain risks of cerebral palsy and epilepsy warrant cautious use of macrolide in pregnancy with warnings in drug safety leaflets and use of alternative antibiotics where appropriate. As macrolides are the third most commonly used class of antibiotics, it is important to confirm these results with high quality studies.

]]>
<![CDATA[The impact of imperfect screening tools on measuring the prevalence of epilepsy and headaches in Burkina Faso]]> https://www.researchpad.co/article/5c4a3090d5eed0c4844c052f

Background

Epilepsy and progressively worsening severe chronic headaches (WSCH) are the two most common clinical manifestations of neurocysticercosis, a form of cysticercosis. Most community-based studies in sub-Saharan Africa (SSA) use a two-step approach (questionnaire and confirmation) to estimate the prevalence of these neurological disorders and neurocysticercosis. Few validate the questionnaire in the field or account for the imperfect nature of the screening questionnaire and the fact that only those who screen positive have the opportunity to be confirmed. This study aims to obtain community-based validity estimates of a screening questionnaire, and to assess the impact of verification bias and misclassification error on prevalence estimates of epilepsy and WSCH.

Methodology/Principal findings

Baseline screening questionnaire followed by neurological examination data from a cluster randomized controlled trial collected between February 2011 and January 2012 were used. Bayesian latent-class models were applied to obtain verification bias adjusted validity estimates for the screening questionnaire. These models were also used to compare the adjusted prevalence estimates of epilepsy and WSCH to those directly obtained from the data (i.e. unadjusted prevalence estimates). Different priors were used and their corresponding posterior inference was compared for both WSCH and epilepsy. Screening data were available for 4768 individuals. For epilepsy, posterior estimates for the sensitivity varied with the priors used but remained robust for the specificity, with the highest estimates at 66.1% (95%BCI: 56.4%;75.3%) for sensitivity and 88.9% (88.0%;89.8%) for specificity. For WSCH, the sensitivity and specificity estimates remained robust, with the highest at 59.6% (49.7%;69.1%) and 88.6% (87.6%;89.6%), respectively. The unadjusted prevalence estimates were consistently lower than the adjusted prevalence estimates for both epilepsy and WSCH.

Conclusions/Significance

This study demonstrates that in some settings, the prevalence of epilepsy and WSCH can be considerably underestimated when using the two-step approach. We provide an analytic solution to obtain more valid prevalence estimates of these neurological disorders, although more community-based validity studies are needed to reduce the uncertainty of the estimates. Valid estimates of these two neurological disorders are essential to obtain accurate burden values for neglected tropical diseases such as neurocysticercosis that manifest as epilepsy or WSCH.

Trial registration

ClinicalTrials.gov NCT03095339.

]]>
<![CDATA[Mouse models of GNAO1-associated movement disorder: Allele- and sex-specific differences in phenotypes]]> https://www.researchpad.co/article/5c79afded5eed0c4841e38d1

Background

Infants and children with dominant de novo mutations in GNAO1 exhibit movement disorders, epilepsy, or both. Children with loss-of-function (LOF) mutations exhibit Epileptiform Encephalopathy 17 (EIEE17). Gain-of-function (GOF) mutations or those with normal function are found in patients with Neurodevelopmental Disorder with Involuntary Movements (NEDIM). There is no animal model with a human mutant GNAO1 allele.

Objectives

Here we develop a mouse model carrying a human GNAO1 mutation (G203R) and determine whether the clinical features of patients with this GNAO1 mutation, which includes both epilepsy and movement disorder, would be evident in the mouse model.

Methods

A mouse Gnao1 knock-in GOF mutation (G203R) was created by CRISPR/Cas9 methods. The resulting offspring and littermate controls were subjected to a battery of behavioral tests. A previously reported GOF mutant mouse knock-in (Gnao1+/G184S), which has not been found in patients, was also studied for comparison.

Results

Gnao1+/G203R mutant mice are viable and gain weight comparably to controls. Homozygotes are non-viable. Grip strength was decreased in both males and females. Male Gnao1+/G203R mice were strongly affected in movement assays (RotaRod and DigiGait) while females were not. Male Gnao1+/G203R mice also showed enhanced seizure propensity in the pentylenetetrazole kindling test. Mice with a G184S GOF knock-in also showed movement-related behavioral phenotypes but females were more strongly affected than males.

Conclusions

Gnao1+/G203R mice phenocopy children with heterozygous GNAO1 G203R mutations, showing both movement disorder and a relatively mild epilepsy pattern. This mouse model should be useful in mechanistic and preclinical studies of GNAO1-related movement disorders.

]]>
<![CDATA[Estimating the association between being seropositive for cysticercosis and the prevalence of epilepsy and severe chronic headaches in 60 villages of rural Burkina Faso]]> https://www.researchpad.co/article/5c536bf0d5eed0c484a495b9

Background

Individuals diagnosed with neurocysticercosis often present with epilepsy and sometimes with progressively worsening severe chronic headaches (WSCH). While cross-sectional associations between seropositivity to cysticercal antigens and epilepsy have been reported, few large scale studies have been conducted in West Africa and none have measured the association between seropositivity to cysticercal antigens and headaches. This study aimed at filling these knowledge gaps by estimating the strength of the cross-sectional association between seropositivity to cysticercal antigens and the prevalence of epilepsy and WSCH in 60 villages of Burkina Faso, West Africa.

Methodology/Principal findings

Baseline data from a cluster randomized controlled trial collected from January 2011 to February 2012 in 60 villages across three provinces in Burkina Faso were used. Between 78 and 80 individuals were screened for epilepsy and WSCH in each village, and those screened positive were confirmed by a physician. Seventy-five percent of all participants were asked to provide a blood sample to test for Taenia solium cysticercus circulating antigens. Hierarchical multivariable logistic models were used to measure the association between seropositivity to cysticercal antigens and epilepsy (lifetime and active) as well as WSCH. Among 3696 individuals who provided a blood sample, 145 were found to have epilepsy only, 140 WSCH only and 19 both. There were positive associations between seropositivity to cysticercal antigens and active epilepsy (prevalence odds ratio (POR): 2.40 (95%CI: 1.15–5.00)) and WSCH (POR: 2.59 (1.34–4.99)).

Conclusions/Significance

Our study is the first to demonstrate a cross-sectional association between seropositivity to cysticercal antigens and WSCH in a large community-based study conducted in West Africa. The measured cross-sectional association had a strength similar to the ones previously observed between seropositivity to cysticercal antigens and lifetime or active epilepsy. As a result, preventing new cysticercosis cases in communities may reduce the prevalence of these two important neurological disorders.

]]>
<![CDATA[The influence of concomitant antiepileptic drugs on lamotrigine serum concentrations in Northwest Chinese Han population with epilepsy]]> https://www.researchpad.co/article/5c478ca5d5eed0c484bd3a7f

Objective

The aims of this study were to identify the influencing factors such as gender, age, dose and combinations of other antiepileptic drugs (AEDs), especially in triple combinations on the pharmacokinetic of Lamotrigine (LTG) in epilepsy patients of Northwest Chinese Han population.

Methods

Data of the LTG concentration and clinical information were analyzed retrospectively from a therapeutic drug monitoring (TDM) database at the Clinical Pharmacy Laboratory of Xi’an Central Hospital between January 1, 2016 and January 1, 2018. The independent-sample t-test, one-way ANOVA analysis and Bonferroni and Tamhane T3 post-hoc test, the stepwise multivariate regression analysis were adopted by IBM SPSS, version 22.0.

Results

226 serum samples met the inclusion criteria and were evaluated. The mean LTG serum concentration was 5.48±3.83 μg/mL. There were no gender differences (P = 0.64), and there were no significant effects by age on LTG serum concentration after age stratification (3–14 years old, 14-45 years old, 45–59 years old) (P = 0.05). Multiple regression analysis showed that the daily LTG dose and co-administration of other AEDs significantly affected LTG serum concentrations. Combination with enzyme-inducer AEDs, the mean steady-state LTG concentration could be decreased by 30.73% compared with LTG monotherapy. Among enzyme-inducer AEDs, particularly strong inducer Carbamazepine (CBZ) could decrease the mean LTG concentration by 53.65%, but weak inducer AEDs such as Oxcarbazepine (OXC) and Topiramate (TPM) had no effect, Valproic acid (VPA) could increase the mean LTG concentration by 93.95%, and the inducer only partially compensated for the inhibitory effect of VPA in triple combination.

Conclusions

There were no significant gender and age effects, but the LTG daily dose and co-administration of other AEDs significantly affected LTG serum concentration. Combination with enzyme-inducer AEDs, especially CBZ could significantly decrease LTG serum concentrations, VPA could significantly increase LTG serum concentrations, and the inducer only partially compensated for the inhibitory effect of VPA in triple combination. In the clinical setting, these findings can help to estimate LTG concentrations and adjust dosage and evaluate adverse drug reactions.

]]>
<![CDATA[Dog alerting and/or responding to epileptic seizures: A scoping review]]> https://www.researchpad.co/article/5c102875d5eed0c4842472c1

Recently, there has been a rising interest in service dogs for people with epilepsy. Dogs have been reported as being sensitive to epileptic episodes in their owners, alerting before and/or responding during or after a seizure, with or without specific training. The purpose of this review is to present a comprehensive overview of the scientific research on seizure-alert/response dogs for people with epilepsy. We aimed to identify the existing scientific literature on the topic, describe the characteristics of seizure-alert/response dogs, and evaluate the state of the evidence base and outcomes. Out of 28 studies published in peer-reviewed journals dealing with this topic, only 5 (one prospective study and four self-reported questionnaires) qualified for inclusion according to PRISMA guidelines. Reported times of alert before seizure varied widely among dogs (with a range from 10 seconds to 5 hours) but seemed to be reliable (accuracy from ≥70% to 85% according to owner reports). Alerting behaviors were generally described as attention-getting. The alert applied to many seizure types. Dogs mentioned as being seizure-alert dogs varied in size and breed. Training methods differed between service animal programs, partially relying on hypothesized cues used by dogs (e.g., variations in behavior, scent, heart rate). Most studies indicated an increase in quality of life and a reduction in the seizure frequency when living with a dog demonstrating seizure-related behavior. However, the level of methodological rigor was generally poor. In conclusion, scientific data are still too scarce and preliminary to reach any definitive conclusion regarding the success of dogs in alerting for an impending seizure, the cues on which this ability may be based, the best type of dog, and associated training. While these preliminary data suggest that this is a promising topic, further research is needed.

]]>
<![CDATA[Defining pediatric polypharmacy: A scoping review]]> https://www.researchpad.co/article/5c0993d7d5eed0c4842ada7b

Objectives

Lack of consensus regarding the semantics and definitions of pediatric polypharmacy challenges researchers and clinicians alike. We conducted a scoping review to describe definitions and terminology of pediatric polypharmacy.

Methods

Medline, PubMed, EMBASE, CINAHL, PsycINFO, Cochrane CENTRAL, and the Web of Science Core Collection databases were searched for English language articles with the concepts of “polypharmacy” and “children”. Data were extracted about study characteristics, polypharmacy terms and definitions from qualifying studies, and were synthesized by disease conditions.

Results

Out of 4,398 titles, we included 363 studies: 324 (89%) provided numeric definitions, 131 (36%) specified duration of polypharmacy, and 162 (45%) explicitly defined it. Over 81% (n = 295) of the studies defined polypharmacy as two or more medications or therapeutic classes. The most common comprehensive definitions of pediatric polypharmacy included: two or more concurrent medications for ≥1 day (n = 41), two or more concurrent medications for ≥31 days (n = 15), and two or more sequential medications over one year (n = 12). Commonly used terms included polypharmacy, polytherapy, combination pharmacotherapy, average number, and concomitant medications. The term polypharmacy was more common in psychiatry literature while epilepsy literature favored the term polytherapy.

Conclusions

Two or more concurrent medications, without duration, for ≥1 day, ≥31 days, or sequentially for one year were the most common definitions of pediatric polypharmacy. We recommend that pediatric polypharmacy studies specify the number of medications or therapeutic classes, if they are concurrent or sequential, and the duration of medications. We propose defining pediatric polypharmacy as “the prescription or consumption of two or more distinct medications for at least one day”. The term “polypharmacy” should be included among key words and definitions in manuscripts.

]]>
<![CDATA[Global characterization of copy number variants in epilepsy patients from whole genome sequencing]]> https://www.researchpad.co/article/5c032ddfd5eed0c4844f889f

Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy number variants (CNVs) studies of epilepsy have used array-based technology and were restricted to the detection of large or exonic events. In contrast, whole-genome sequencing (WGS) has the potential to more comprehensively profile CNVs but existing analytic methods suffer from limited accuracy. We show that this is in part due to the non-uniformity of read coverage, even after intra-sample normalization. To improve on this, we developed PopSV, an algorithm that uses multiple samples to control for technical variation and enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehensive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For both large and small variants, we found an enrichment of rare exonic events in epilepsy patients, especially in genes with predicted loss-of-function intolerance. Notably, this genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously known epilepsy genes. This enrichment was strongest for non-coding CNVs located within 100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 potentially damaging events that could be associated with known or new candidate epilepsy genes. Our results suggest that comprehensive sequence-based profiling of CNVs could help explain a larger fraction of epilepsy cases.

]]>
<![CDATA[De novo and inherited private variants in MAP1B in periventricular nodular heterotopia]]> https://www.researchpad.co/article/5afd470e463d7e6ee57105fb

Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.

]]>
<![CDATA[Risk of Violent Crime in Individuals with Epilepsy and Traumatic Brain Injury: A 35-Year Swedish Population Study]]> https://www.researchpad.co/article/5989db27ab0ee8fa60bd0755

Seena Fazel and colleagues report findings from a longitudinal follow-up study in Sweden that evaluated the risks of violent crime subsequent to hospitalization for epilepsy, or traumatic brain injury. The researchers control for familial confounding with sibling controls. The analyses call into question an association between epilepsy and violent crime, although they do suggest that there may be a relationship between traumatic brain injury and violent crime.

]]>
<![CDATA[Taenia solium Cysticercosis Hotspots Surrounding Tapeworm Carriers: Clustering on Human Seroprevalence but Not on Seizures]]> https://www.researchpad.co/article/5989dac2ab0ee8fa60bb1227

Background

Neurocysticercosis accounts for 30%–50% of all late-onset epilepsy in endemic countries. We assessed the clustering patterns of Taenia solium human cysticercosis seropositivity and seizures around tapeworm carriers in seven rural communities in Peru.

Methodology

The presence of T. solium–specific antibodies was defined as one or more positive bands in the enzyme-linked immunoelectrotransfer blot (EITB). Neurocysticercosis-related seizures cases were diagnosed clinically and had positive neuroimaging or EITB.

Principal Findings

Eleven tapeworm carriers were identified by stool microscopy. The seroprevalence of human cysticercosis was 24% (196/803). Seroprevalence was 21% >50 m from a carrier and increased to 32% at 1–50 m (p = 0.047), and from that distance seroprevalence had another significant increase to 64% at the homes of carriers (p = 0.004). Seizure prevalence was 3.0% (25/837) but there were no differences between any pair of distance ranges (p = 0.629, Wald test 2 degrees of freedom).

Conclusion/Significance

We observed a significant human cysticercosis seroprevalence gradient surrounding current tapeworm carriers, although cysticercosis-related seizures did not cluster around carriers. Due to differences in the timing of the two outcomes, seroprevalence may reflect recent T. solium exposure more accurately than seizure frequency.

]]>
<![CDATA[A PI3-Kinase–Mediated Negative Feedback Regulates Neuronal Excitability]]> https://www.researchpad.co/article/5989db1fab0ee8fa60bcf020

Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

]]>
<![CDATA[Pure Red Cell Aplasia after 13 Years of Sodium Valproate, and Bone Marrow Suppression after 17 Years of Carbamazepine]]> https://www.researchpad.co/article/5989dad3ab0ee8fa60bb6d45

A 38-year-old woman presented with acute hematological toxicity from her anticonvulsants, even though she had been taking them for many years.

]]>
<![CDATA[Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity]]> https://www.researchpad.co/article/5989da9fab0ee8fa60ba51b9

Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity.

]]>