ResearchPad - ethers https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The sensitivity of transcriptomics BMD modeling to the methods used for microarray data normalization]]> https://www.researchpad.co/article/elastic_article_14756 Whole-genome expression data generated by microarray studies have shown promise for quantitative human health risk assessment. While numerous approaches have been developed to determine benchmark doses (BMDs) from probeset-level dose responses, sensitivity of the results to methods used for normalization of the data has not yet been systematically investigated. Normalization of microarray data converts raw hybridization signals to expression estimates that are expected to be proportional to the amounts of transcripts in the profiled specimens. Different approaches to normalization have been shown to greatly influence the results of some downstream analyses, including biological interpretation. In this study we evaluate the influence of microarray normalization methods on the transcriptomic BMDs. We demonstrate using in vivo data that the use of alternative pipelines for normalization of Affymetrix microarray data can have a considerable impact on the number of detected differentially expressed genes and pathways (processes) determined to be treatment responsive, which may lead to alternative interpretations of the data. In addition, we found that normalization can have a considerable effect (as much as ~30-fold in this study) on estimation of the minimum biological potency (transcriptomic point of departure). We argue for consideration of alternative normalization methods and their data-informed selection to most effectively interpret microarray data for use in human health risk assessment.

]]>
<![CDATA[The effect of NaOH pretreatment on coal structure and biomethane production]]> https://www.researchpad.co/article/Nec5b1db1-34f5-4425-bec1-1f1e431a6eb6

Biogenic CBM is an important component of detected CBM, which is formed by coal biodegradation and can be regenerated by anaerobic microorganisms. One of the rate-limiting factors for microbial degradation is the bioavailability of coal molecules, especially for anthracite which is more condense and has higher aromaticity compared with low-rank coal. In this paper, NaOH solution with different concentrations and treating time was employed to pretreat anthracite from Qinshui Basin to alter the coal structure and facilitate the biodegradation. The results showed that the optimal pretreatment conditions were 1.5 M NaOH treating for 12 h, under which the biomethane production was increased by 17.65% compared with untreated coal. The results of FTIR and XRD showed that NaOH pretreatment mainly reduced the multi-substituted aromatics, increased the C-O in alcohols and aromatic ethers and the branching degree of aliphatic chain, and decreased the aromatic ring structure, resulting in the improvement of coal bioavailability and enhancement of biomethane yield. And some organics with potential to generate methane were released to filtrate as revealed by GC-MS. Our results suggested that NaOH was an effective solution for pretreating coal to enhance biogenic methane production, and anthracite after treating with NaOH could be the better substrate for methanogenesis.

]]>
<![CDATA[Increase of tensile strength and toughness of bio-based diglycidyl ether of bisphenol A with chitin nanowhiskers]]> https://www.researchpad.co/article/5989db5eab0ee8fa60be0a95

It is challenging to reinforce and toughen thermoset epoxy resins. We describe a slurry-compounding technique to transfer a uniform dispersion of chitin nanowhiskers (CW) in ethanol into an epoxy matrix. The incorporation of the hydrophilic CW reinforces the oil-soluble diglycidyl ether of bisphenol A (DGEBA). The resultant CW/epoxy bionanocomposites were transparent and showed considerably enhanced thermal and mechanical properties with tensile strength, modulus, toughness, and elongation at break being increased by 49%, 16%, 457%, and 250%, with only 2.5 wt.% CW. This improvement in strength and toughness is rare for thermoset epoxy/rigid nanofiller systems. We hypothesize that CW with many free amine groups could function not only as a nanofiller but also as a macromolecular polyamine hardener that participates in epoxy curing. The strong covalent interaction between the filler and the matrix allowed for efficient load transfer across the interfaces, which accounted for the greater strength and toughness.

]]>
<![CDATA[Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes]]> https://www.researchpad.co/article/5989dafeab0ee8fa60bc590b

The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months.

]]>
<![CDATA[Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury]]> https://www.researchpad.co/article/5989da88ab0ee8fa60b9cdf3

Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL), tubulin (TUBB2A, TUBA4A), microtubule-associated proteins (MAP1A, MAP1B), collagen (COL6A1, COL6A3) and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1), APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC), including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the involvement of several important molecular pathways. This will allow future identification of therapeutic targets for improving the visual consequences of r-mTBI.

]]>
<![CDATA[Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India]]> https://www.researchpad.co/article/5989d9e3ab0ee8fa60b6a2bc

During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

]]>
<![CDATA[A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria]]> https://www.researchpad.co/article/5989db28ab0ee8fa60bd0b6d

The chemical synthesis of new lipophilic polyphenols with improved properties presents technical difficulties. Here we describe the selection, isolation and identification of lipolytic bacteria from food-processing industrial wastes, and their use for tailoring a new set of compounds with great interest in the food industry. These bacteria were employed to produce lipolytic supernatants, which were applied without further purification as biocatalysts in the chemoselective and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols. The chemoselectivity of polyphenols acylation/deacylation was analyzed, revealing the preference of the lipases for phenolic hydroxyl groups and phenolic esters. In addition, the alcoholysis of peracetylated 3,4-dihydroxyphenylglycol resulted in a series of lipophilic 2-alkoxy-2-(3,4-dihydroxyphenyl)ethyl acetate through an unexpected lipase-mediated etherification at the benzylic position. These new compounds are more lipophilic and retained their antioxidant properties. This approach can provide access to unprecedented derivatives of 3,4-dihydroxyphenylglycol with improved properties.

]]>
<![CDATA[Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination]]> https://www.researchpad.co/article/5989da0fab0ee8fa60b792a7

Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases provide a pair of structures ideal for investigating the mechanism regarding how these cellulases can retain activity at high temperature. In the present study, we applied the SCHEMA non-contiguous recombination algorithm as a novel tool, which assigns protein sequences into blocks for domain swapping in a way that lessens structural disruption, to generate a set of chimeric proteins derived from the recombination of GsCelA and BsCel5A. Analyzing the activity and thermostability of this designed library set, which requires only a limited number of chimeras by SCHEMA calculations, revealed that one of the blocks may contribute to the higher thermostability of GsCelA. When tested against swollen Avicel, the highly thermostable chimeric cellulase C10 containing this block showed significantly higher activity (22%-43%) and higher thermostability compared to the parental enzymes. With further structural determinations and mutagenesis analyses, a 310 helix was identified as being responsible for the improved thermostability of this block. Furthermore, in the presence of ionic calcium and crown ether (CR), the chimeric C10 was found to retain 40% residual activity even after heat treatment at 90°C. Combining crystal structure determinations and structure-guided SCHEMA recombination, we have determined the mechanism responsible for the high thermostability of GsCelA, and generated a novel recombinant enzyme with significantly higher activity.

]]>
<![CDATA[Biochemical Mechanisms for Geographical Adaptations to Novel Toxin Exposures in Butterflyfish]]> https://www.researchpad.co/article/5989d9fdab0ee8fa60b72cdb

Some species of butterflyfish have had preyed upon corals for millions of years, yet the mechanism of butterflyfish specialized coral feeding strategy remains poorly understood. Certain butterflyfish have the ability to feed on allelochemically rich soft corals, e.g. Sinularia maxima. Cytochrome P450 (CYP) is the predominant enzyme system responsible for the detoxification of dietary allelochemicals. CYP2-like and CYP3A-like content have been associated with butterflyfish that preferentially consumes allelochemically rich soft corals. To investigate the role of butterflyfish CYP2 and CYP3A enzymes in dietary preference, we conducted oral feeding experiments using homogenates of S. maxima and a toxin isolated from the coral in four species of butterflyfish with different feeding strategies. After oral exposure to the S. maxima toxin 5-episinulaptolide (5ESL), which is not normally encountered in the Hawaiian butterflyfish diet, an endemic specialist, Chaetodon multicinctus experienced 100% mortality compared to a generalist, Chaetodon auriga, which had significantly more (3–6 fold higher) CYP3A-like basal content and catalytic activity. The specialist, Chaetodon unimaculatus, which preferentially feed on S. maxima in Guam, but not in Hawaii, had 100% survival, a significant induction of 8–12 fold CYP3A-like content, and an increased ability (2-fold) to metabolize 5ESL over other species. Computer modeling data of CYP3A4 with 5ESL were consistent with microsomal transformation of 5ESL to a C15-16 epoxide from livers of C. unimaculatus. Epoxide formation correlated with CYP3A-like content, catalytic activity, induction, and NADPH-dependent metabolism of 5ESL. These results suggest a potentially important role for the CYP3A family in butterflyfish-coral diet selection through allelochemical detoxification.

]]>
<![CDATA[Quantification of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Commercial Cows’ Milk from California by Gas Chromatography–Triple Quadruple Mass Spectrometry]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7ebe

We determined 12 polybrominated diphenyl ethers (PBDEs) and 19 polychlorinated biphenyls (PCBs) congeners in eight different brands of commercial whole milk (WM) and fat free milk (FFM) produced and distributed in California. Congeners were extracted using a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method, purified by gel permeation chromatography, and quantified using gas chromatography-triple quadruple mass spectrometry. PBDEs and PCBs were detected in all FFM and WM samples. The most prevalent PBDE congeners in WM were BDE-47 (geometric mean: 18.0 pg/mL, 0.51 ng/g lipid), BDE-99 (geometric mean: 9.9 pg/mL, 0.28 ng/g lipid), and BDE-49 (geometric mean: 6.0 pg/mL, 0.17 ng/g lipid). The dominant PCB congeners in WM were PCB-101(geometric mean: 23.6 pg/mL, 0.67 ng/g lipid), PCB-118 (geometric mean: 25.2 pg/mL, 0.72 ng/g lipid), and PCB-138 (geometric mean: 25.3 pg/mL, 0.72 ng/g lipid). The sum of all 19 PCB congeners in FFM and WM were several orders of magnitude below the U.S. FDA tolerance. The sum of PBDEs in milk samples suggest close proximity to industrial emissions, and confirm previous findings of elevated PBDE levels in California compared to other regions in the United States.

]]>
<![CDATA[Reduction in Malaria Incidence following Indoor Residual Spraying with Actellic 300 CS in a Setting with Pyrethroid Resistance: Mutasa District, Zimbabwe]]> https://www.researchpad.co/article/5989da89ab0ee8fa60b9d2f9

Background

More than half of malaria cases in Zimbabwe are concentrated in Manicaland Province, where seasonal malaria epidemics occur despite intensified control strategies. Recently, high levels of pyrethroid and carbamate resistance were detected in Anopheles funestus, the major malaria vector in eastern Zimbabwe. In response, a single round of indoor residual spraying (IRS) using pirimiphos-methyl (an organophosphate) was implemented in four high burden districts of Manicaland Province from November 1, 2014 to December 19, 2014. The objective of this study was to evaluate the effect of this programmatic switch in insecticides on malaria morbidity reported from health care facilities in Mutasa District, one of the worst affected districts in Manicaland Province.

Methods

The number of weekly malaria cases for each health facility 24 months prior to the 2014 IRS campaign and in the subsequent high transmission season were obtained from passive case surveillance. Environmental variables were extracted from remote-sensing data sources and linked to each health care facility. Negative binomial regression was used to model the weekly number of malaria cases, adjusted for seasonality and environmental variables.

Results

From December 2012 to May 2015, 124,206 malaria cases were reported from 42 health care facilities in Mutasa District. Based on a higher burden of malaria, 20 out of 31 municipal wards were sprayed in the district. Overall, 87.3% of target structures were sprayed and 92.1% of the target population protected. During the 6 months after the 2014 IRS campaign, a period when transmission would have otherwise peaked, the incidence of malaria was 38% lower than the preceding 24 months at health facilities in the sprayed wards.

Conclusions

Pirimiphos-methyl had a measurable impact on malaria incidence and is an effective insecticide for the control of An. funestus in eastern Zimbabwe.

]]>
<![CDATA[Synthesis, characterization, and debromination reactivity of cellulose-stabilized Pd/Fe nanoparticles for 2,2',4,4'-tretrabromodiphenyl ether]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc875

In this study, two kinds of cellulose derivatives (polyanionic cellulose (PAC) and hydroxypropylmethyl cellulose (HPMC)) were selected as stabilizers of Pd/Fe nanoparticles (NPs) to investigate their influences on the debromination performances of 2,2',4,4'-tretrabromodiphenyl ether (BDE47). Field emission scanning electron microscope (FE-SEM) images revealed that the cellulose-stabilized Pd/Fe NPs were smaller and more uniform than the bare-Pd/Fe NPs. X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) results suggested that cellulose coatings found on Pd/Fe NPs surfaces featured some antioxidation abilities, which followed the order of HPMC < PAC. Sedimentation tests demonstrated that the stabilizing power of PAC for Pd/Fe NPs was higher than that of HPMC. Fourier transfer infrared spectrometer (FTIR) results indicated that PAC molecules were bound to the Pd/Fe NPs surfaces by polar covalent bonds and hydrogen bonds, while HPMC molecules interacted with the nanoparticles by hydrogen bonds. Batch debromination test for BDE47 demonstrated that the catalytic debromination rate with cellulose-stabilized Pd/Fe NPs was higher than that with bare-Pd/Fe NPs during reaction period of 15 min. Overall, this study indicated that both celluloses are beneficial to forming smaller, more regular, stable and antioxidative Pd/Fe NPs, leading to higher debromination reactivity for BDE47 compared with the bare-Pd/Fe NPs. Therefore Pd/Fe NPs can be utilized as a promising remediation technology for the contaminated groundwater and soils.

]]>
<![CDATA[Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbfa7

The mosquito Aedes aegypti is the primary vector of different arboviruses and represents a major public health problem. Several Brazilian populations of Ae. aegypti have developed resistance to temephos, the most used organophosphate larvicide. New tools which are less harmful to the environment and safer for humans are becoming increasingly important to control this insect vector. Spinosad, an aerobic fermentation product of a soil actinobacteria, has a favorable environmental profile. It presents selective insecticide properties, a mechanism of action that differs from those of many synthetic chemical insecticides. The toxicity of spinosad and temephos to Aedes aegypti populations from Brazil, which were previously exposed to temephos, were investigated in this study. Larval susceptibility (LC50) to temephos varied from 3μg/L for Rockefeller up to 260 μg/L for Santana do Ipanema field derived population. Larval susceptibility (LC50) to spinosad varied from 23μg/L for Rockefeller up to 93μg/L for Marilia field derived population. In addition, a semi-field trial was performed to evaluate spinosad (NatularTM DT) initial efficacy and persistence toward four field-derived lineages and the Rockefeller lineage, used as an internal control. Spinosad was tested at 0.5mg active ingredient/L in 200L capacity water tanks. Mortality was recorded each 24 hours after exposition and tanks were further recolonized once per week with mortality being recorded daily for eight weeks. Spinosad provided a level equal or superior to 80% mortality during a seven to eight week evaluation period. The assessed populations did not present cross-resistance between spinosad and temephos in laboratory conditions. It demonstrates that spinosad may be a promising larvicide for the control of Ae. aegypti, especially for populations in which resistance to temephos has been detected.

]]>
<![CDATA[Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc859

The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.

]]>
<![CDATA[Disrupting Dimerization Translocates Soluble Epoxide Hydrolase to Peroxisomes]]> https://www.researchpad.co/article/5989da56ab0ee8fa60b8f0c1

The epoxyeicosatrienoic acid (EET) neutralizing enzyme soluble epoxide hydrolase (sEH) is a neuronal enzyme, which has been localized in both the cytosol and peroxisomes. The molecular basis for its dual localization remains unclear as sEH contains a functional peroxisomal targeting sequence (PTS). Recently, a missense polymorphism was identified in human sEH (R287Q) that enhances its peroxisomal localization. This same polymorphism has also been shown to generate weaker sEH homo-dimers. Taken together, these observations suggest that dimerization may mask the sEH PTS and prevent peroxisome translocation. In the current study, we test the hypothesis that dimerization is a key regulator of sEH subcellular localization. Specifically, we altered the dimerization state of sEH by introducing substitutions in amino acids responsible for the dimer-stabilizing salt-bridge. Green Fluorescent Protein (GFP) fusions of each of mutants were co-transfected into mouse primary cultured cortical neurons together with a PTS-linked red fluorescent protein to constitutively label peroxisomes. Labeled neurons were analyzed using confocal microscopy and co-localization of sEH with peroxisomes was quantified using Pearson’s correlation coefficient. We find that dimer-competent sEH constructs preferentially localize to the cytosol, whereas constructs with weakened or disrupted dimerization were preferentially targeted to peroxisomes. We conclude that the sEH dimerization status is a key regulator of its peroxisomal localization.

]]>
<![CDATA[Effects of a Soluble Epoxide Hydrolase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury in Mice]]> https://www.researchpad.co/article/5989dabdab0ee8fa60baf761

Objectives

Inflammation plays a key role in the pathogenesis of acute lung injury (ALI). Soluble epoxide hydrolase (sEH) is suggested as a vital pharmacologic target for inflammation. In this study, we determined whether a sEH inhibitor, AUDA, exerts lung protection in lipopolysaccharide (LPS)-induced ALI in mice.

Methods

Male BALB/c mice were randomized to receive AUDA or vehicle intraperitoneal injection 4 h after LPS or phosphate buffered saline (PBS) intratracheal instillation. Samples were harvested 24 h post LPS or PBS administration.

Results

AUDA administration decreased the pulmonary levels of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α. Improvement of oxygenation and lung edema were observed in AUDA treated group. AUDA significantly inhibited sEH activity, and elevated epoxyeicosatrienoic acids (EETs) levels in lung tissues. Moreover, LPS induced the activation of nuclear factor (NF)-κB was markedly dampened in AUDA treated group.

Conclusion

Administration of AUDA after the onset of LPS-induced ALI increased pulmonary levels of EETs, and ameliorated lung injury. sEH is a potential pharmacologic target for ALI.

]]>
<![CDATA[Lessons of the Elwha River: Managing Health Hazards During Dam Removal]]> https://www.researchpad.co/article/5ac92bd7463d7e7af32601b0 ]]> <![CDATA[Faecal Parasitology: Concentration Methodology Needs to be Better Standardised]]> https://www.researchpad.co/article/5989d9f1ab0ee8fa60b6e733

Aim

To determine whether variation in the preservative, pore size of the sieve, solvent, centrifugal force and centrifugation time used in the Ridley-Allen Concentration method for examining faecal specimens for parasite stages had any effect on their recovery in faecal specimens.

Methods

A questionnaire was sent to all participants in the UK NEQAS Faecal Parasitology Scheme. The recovery of parasite stages was compared using formalin diluted in water or formalin diluted in saline as the fixative, 3 different pore sizes of sieve, ether or ethyl acetate as a solvent, 7 different centrifugal forces and 6 different centrifugation times according to the methods described by participants completing the questionnaire.

Results

The number of parasite stages recovered was higher when formalin diluted in water was used as fixative, a smaller pore size of sieve was used, ethyl acetate along with Triton X 100 was used as a solvent and a centrifugal force of 3,000 rpm for 3 minutes were employed.

Conclusions

This study showed that differences in methodology at various stages of the concentration process affect the recovery of parasites from a faecal specimen and parasites present in small numbers could be missed if the recommended methodology is not followed.

]]>
<![CDATA[Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides]]> https://www.researchpad.co/article/5989daaeab0ee8fa60baa7a4

The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

]]>
<![CDATA[HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress]]> https://www.researchpad.co/article/5989da34ab0ee8fa60b85919

Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions.

]]>