ResearchPad - evolution https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae]]> https://www.researchpad.co/article/elastic_article_11231 In Rubiaceae phylogenetics, the number of markers often proved a limitation with authors failing to provide well-supported trees at tribal and generic levels. A robust phylogeny is a prerequisite to study the evolutionary patterns of traits at different taxonomic levels. Advances in next-generation sequencing technologies have revolutionized biology by providing, at reduced cost, huge amounts of data for an increased number of species. Due to their highly conserved structure, generally recombination-free, and mostly uniparental inheritance, chloroplast DNA sequences have long been used as choice markers for plant phylogeny reconstruction. The main objectives of this study are: 1) to gain insight in chloroplast genome evolution in the Rubiaceae (Ixoroideae) through efficient methodology for de novo assembly of plastid genomes; and, 2) to test the efficiency of mining SNPs in the nuclear genome of Ixoroideae based on the use of a coffee reference genome to produce well-supported nuclear trees. We assembled whole chloroplast genome sequences for 27 species of the Rubiaceae subfamily Ixoroideae using next-generation sequences. Analysis of the plastid genome structure reveals a relatively good conservation of gene content and order. Generally, low variation was observed between taxa in the boundary regions with the exception of the inverted repeat at both the large and short single copy junctions for some taxa. An average of 79% of the SNP determined in the Coffea genus are transferable to Ixoroideae, with variation ranging from 35% to 96%. In general, the plastid and the nuclear genome phylogenies are congruent with each other. They are well-resolved with well-supported branches. Generally, the tribes form well-identified clades but the tribe Sherbournieae is shown to be polyphyletic. The results are discussed relative to the methodology used and the chloroplast genome features in Rubiaceae and compared to previous Rubiaceae phylogenies.

]]>
<![CDATA[Modeling competitive evolution of multiple languages]]> https://www.researchpad.co/article/elastic_article_7854 Increasing evidence demonstrates that in many places language coexistence has become ubiquitous and essential for supporting language and cultural diversity and associated with its financial and economic benefits. The competitive evolution among multiple languages determines the evolution outcome, either coexistence, or decline, or extinction. Here, we extend the Abrams-Strogatz model of language competition to multiple languages and then validate it by analyzing the behavioral transitions of language usage over the recent several decades in Singapore and Hong Kong. In each case, we estimate from data the model parameters that measure each language utility for its speakers and the strength of two biases, the majority preference for their language, and the minority aversion to it. The values of these two biases decide which language is the fastest growing in the competition and what would be the stable state of the system. We also study the system convergence time to stable states and discover the existence of tipping points with multiple attractors. Moreover, the critical slowdown of convergence to the stable fractions of language users appears near and peaks at the tipping points, signaling when the system approaches them. Our analysis furthers our understanding of evolution of various languages and the role of tipping points in behavioral transitions. These insights may help to protect languages from extinction and retain the language and cultural diversity.

]]>
<![CDATA[Adaptation to unstable coordination patterns in individual and joint actions]]> https://www.researchpad.co/article/elastic_article_7665 Previous research on interlimb coordination has shown that some coordination patterns are more stable than others, and function as attractors in the space of possible phase relations between different rhythmic movements. The canonical coordination patterns, i.e. the two most stable phase relations, are in-phase (0 degree) and anti-phase (180 degrees). Yet, musicians are able to perform other coordination patterns in intrapersonal as well as in interpersonal coordination with remarkable precision. This raises the question of how music experts manage to produce these unstable patterns of movement coordination. In the current study, we invited participants with at least five years of training on a musical instrument. We used an adaptation paradigm to address two factors that may facilitate producing unstable coordination patterns. First, we investigated adaptation in different coordination settings, to test the hypothesis that the lower coupling strength between individuals during joint performance makes it easier to achieve stability outside of the canonical patterns than the stronger coupling during individual bimanual performance. Second, we investigated whether adding to the structure of action effects may support achieving unstable coordination patterns, both intra- and inter-individually. The structure of action effects was strengthened by adding a melodic contour to the action effects, a measure that has been shown to improve the acquisition of bimanual coordination skills. Adaptation performance was measured both in terms of asynchrony and variability thereof. As predicted, we found that producing unstable patterns benefitted from the weaker coupling during joint performance. Surprisingly, the structure of action effects did not help with achieving unstable coordination patterns.

]]>
<![CDATA[Rapid divergent coevolution of <i>Sinopotamon</i> freshwater crab genitalia facilitates a burst of species diversification]]> https://www.researchpad.co/article/elastic_article_6762 One of the most striking radiations in brachyuran evolution is the considerable morphological diversification of the external reproductive structures of primary freshwater crabs: the male first gonopod (G1) and the female vulva (FV). However, the lack of quantitative studies, especially the lack of data on female genitalia, has seriously limited our understanding of genital evolution in these lineages. Here we examined 69 species of the large Chinese potamid freshwater crab genus Sinopotamon Bott, 1967 (more than 80% of the described species). We used a landmark‐based geometric morphometric approach to analyze variation in the shape of the G1 and FV, and to compare the relative degree of variability of the genitalia with non‐reproductive structures (the third maxillipeds). We found rapid divergent evolution of the genitalia among species of Sinopotamon when compared to non‐reproductive traits. In addition, the reconstruction of ancestral groundplans, together with plotting analyses, indicated that the FV show the most rapid divergence, and that changes in FV traits correlate with changes in G1 traits. Here we provide new evidence for coevolution between the male and female external genitalia of Sinopotamon that has likely contributed to rapid divergent evolution and an associated burst of speciation in this lineage.

]]>
<![CDATA[Genetic architecture of a key reproductive isolation trait differs between sympatric and non-sympatric sister species of Lake Victoria cichlids]]> https://www.researchpad.co/article/Nd141aa0e-3c78-4fd4-aac5-04dac3d58edc One hallmark of the East African cichlid radiations is the rapid evolution of reproductive isolation that is robust to full sympatry of many closely related species. Theory predicts that species persistence and speciation in sympatry with gene flow are facilitated if loci of large effect or physical linkage (or pleiotropy) underlie traits involved in reproductive isolation. Here, we investigate the genetic architecture of a key trait involved in behavioural isolation, male nuptial coloration, by crossing two sister species pairs of Lake Victoria cichlids of the genus Pundamilia and mapping nuptial coloration in the F2 hybrids. One is a young sympatric species pair, representative of an axis of colour motif differentiation, red-dorsum versus blue, that is highly recurrent in closely related sympatric species. The other is a species pair representative of colour motifs, red-chest versus blue, that are common in allopatric but uncommon in sympatric closely related species. We find significant quantitative trait loci (QTLs) with moderate to large effects (some overlapping) for red and yellow in the sympatric red-dorsum × blue cross, whereas we find no significant QTLs in the non-sympatric red-chest × blue cross. These findings are consistent with theory predicting that large effect loci or linkage/pleiotropy underlying mating trait differentiation could facilitate speciation and species persistence with gene flow in sympatry.

]]>
<![CDATA[Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes]]> https://www.researchpad.co/article/N16eae927-7174-4d29-b801-b8862f8ce30e A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.

]]>
<![CDATA[ <i>Korotnevella hemistylolepis</i> N. Sp. and <i>Korotnevella monacantholepis</i> N. Sp. (Paramoebidae), Two New Scale‐covered Mesohaline Amoebae]]> https://www.researchpad.co/article/N02836338-e4d7-4f26-8297-0426c9ae4220 ABSTRACT. Two new species of Korotnevella Goodkov, 1988, Korotnevella hemistylolepis n. sp. and Korotnevella monacantholepis n. sp., are described from mesohaline ecosystems. The amoebae are characterized on the basis of light and electron microscopy with special emphasis on the structure of the basket scales, which have species‐specific architecture. The two new species are the second and third ones recovered from environments other than freshwater. In terms of scale morphology they most closely resemble a freshwater species, Korotnevella bulla (Schaeffer, 1926) Goodkov, 1988. Two genus names, Dactylamoeba Korotnev, 1880 and Korotnevella Goodkov, 1988, are in current use. The latter name is preferred, pending rediscovery and characterization of Dactylamoeba elongata Korotnev, 1880, the type species of the genus. Korotnevella species can be divided into three groups on the basis of scale morphology, suggesting that the genus may not be monophyletic. A key to species is provided.

]]>
<![CDATA[Genomic characterization of the non-O1/non-O139 <i>Vibrio cholerae</i> strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018]]> https://www.researchpad.co/article/N3195401c-faf6-4361-b2ea-0536d29ea9b9 is a human pathogen, which is transmitted by the consumption of contaminated food or water. strains belonging to the serogroups O1 and O139 can cause cholera outbreaks and epidemics, a severe life-threatening diarrheal disease. In contrast, serogroups other than O1 and O139, denominated as non-O1/non-O139, have been mainly associated with sporadic cases of moderate or mild diarrhea, bacteremia and wound infections. Here we investigated the virulence determinants and phylogenetic origin of a non-O1/non-O139 strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. We found that this outbreak strain lacks the classical virulence genes harboured by O1 and O139 strains, including the cholera toxin (CT) and the toxin-coregulated pilus (TCP). However, this strain carries genomic islands (GIs) encoding Type III and Type VI secretion systems (T3SS/T6SS) and antibiotic resistance genes. Moreover, we found these GIs are wide distributed among several lineages of non-O1/non-O139 strains. Our results suggest that the acquisition of these GIs may enhance the virulence of non-O1/non-O139 strains that lack the CT and TCP-encoding genes. Our results highlight the pathogenic potential of these strains.

]]>
<![CDATA[Comparison of Shiga toxin-encoding bacteriophages in highly pathogenic strains of Shiga toxin-producing <i>Escherichia coli</i> O157:H7 in the UK]]> https://www.researchpad.co/article/N2911cbf6-de66-4445-8a87-f504e01b444c Over the last 35 years in the UK, the burden of Shiga toxin-producing (STEC) O157:H7 infection has, during different periods of time, been associated with five different sub-lineages (1983–1995, Ia, I/IIa and I/IIb; 1996–2014, Ic; and 2015–2018, IIb). The acquisition of a stx2a-encoding bacteriophage by these five sub-lineages appears to have coincided with their respective emergences. The Oxford Nanopore Technologies (ONT) system was used to sequence, characterize and compare the stx-encoding prophages harboured by each sub-lineage to investigate the integration of this key virulence factor. The stx2a-encoding prophages from each of the lineages causing clinical disease in the UK were all different, including the two UK sub-lineages (Ia and I/IIa) circulating concurrently and causing severe disease in the early 1980s. Comparisons between the stx2a-encoding prophage in sub-lineages I/IIb and IIb revealed similarity to the prophage commonly found to encode stx2c, and the same site of bacteriophage integration (sbcB) as stx2c-encoding prophage. These data suggest independent acquisition of previously unobserved stx2a-encoding phage is more likely to have contributed to the emergence of STEC O157:H7 sub-lineages in the UK than intra-UK lineage to lineage phage transmission. In contrast, the stx2c-encoding prophage showed a high level of similarity across lineages and time, consistent with the model of stx2c being present in the common ancestor to extant STEC O157:H7 and maintained by vertical inheritance in the majority of the population. Studying the nature of the stx-encoding bacteriophage contributes to our understanding of the emergence of highly pathogenic strains of STEC O157:H7.

]]>
<![CDATA[Genome structure reveals the diversity of mating mechanisms in <i>Saccharomyces cerevisiae</i> x <i>Saccharomyces kudriavzevii</i> hybrids, and the genomic instability that promotes phenotypic diversity]]> https://www.researchpad.co/article/Nedd8319d-3380-450b-8d94-22644704759d Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.

]]>
<![CDATA[OmniChange: The Sequence Independent Method for Simultaneous Site-Saturation of Five Codons]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7f19

Focused mutant library generation methods have been developed to improve mainly “localizable” enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modifications. Here we report, a multiple site saturation mutagenesis method, OmniChange, which simultaneously and efficiently saturates five independent codons. As proof of principle, five chemically cleaved DNA fragments, each carrying one NNK-degenerated codon, were generated and assembled to full gene length in a one-pot-reaction without additional PCR-amplification or use of restriction enzymes or ligases. Sequencing revealed the presence of up to 27 different codons at individual positions, corresponding to 84.4% of the theoretical diversity offered by NNK-degeneration. OmniChange is absolutely sequence independent, does not require a minimal distance between mutated codons and can be accomplished within a day.

]]>
<![CDATA[Till Death (Or an Intruder) Do Us Part: Intrasexual-Competition in a Monogamous Primate]]> https://www.researchpad.co/article/5989daaaab0ee8fa60ba8f45

Polygynous animals are often highly dimorphic, and show large sex-differences in the degree of intra-sexual competition and aggression, which is associated with biased operational sex ratios (OSR). For socially monogamous, sexually monomorphic species, this relationship is less clear. Among mammals, pair-living has sometimes been assumed to imply equal OSR and low frequency, low intensity intra-sexual competition; even when high rates of intra-sexual competition and selection, in both sexes, have been theoretically predicted and described for various taxa. Owl monkeys are one of a few socially monogamous primates. Using long-term demographic and morphological data from 18 groups, we show that male and female owl monkeys experience intense intra-sexual competition and aggression from solitary floaters. Pair-mates are regularly replaced by intruding floaters (27 female and 23 male replacements in 149 group-years), with negative effects on the reproductive success of both partners. Individuals with only one partner during their life produced 25% more offspring per decade of tenure than those with two or more partners. The termination of the pair-bond is initiated by the floater, and sometimes has fatal consequences for the expelled adult. The existence of floaters and the sporadic, but intense aggression between them and residents suggest that it can be misleading to assume an equal OSR in socially monogamous species based solely on group composition. Instead, we suggest that sexual selection models must assume not equal, but flexible, context-specific, OSR in monogamous species.

]]>
<![CDATA[The Evolution of Mammalian Gene Families]]> https://www.researchpad.co/article/5b7c08aa463d7e06bd0bbc4e

Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives.

]]>
<![CDATA[A46 MERS-CoV in Arabian camels in Africa and Central Asia]]> https://www.researchpad.co/article/5be9f0c5d5eed0c4848f3f89 ]]> <![CDATA[The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms]]> https://www.researchpad.co/article/N1f661d3e-d0c0-407e-92c0-bb72cd78029d

The mitochondrial genomes of flowering plants are well known for their large size, variable coding-gene set and fluid genome structure. The available mitochondrial genomes of the early angiosperms show extreme genetic diversity in genome size, structure, and sequences, such as rampant HGTs in Amborella mt genome, numerous repeated sequences in Nymphaea mt genome, and conserved gene evolution in Liriodendron mt genome. However, currently available early angiosperm mt genomes are still limited, hampering us from obtaining an overall picture of the mitogenomic evolution in angiosperms. Here we sequenced and assembled the draft mitochondrial genome of Magnolia biondii Pamp. from Magnoliaceae (magnoliids) using Oxford Nanopore sequencing technology. We recovered a single linear mitochondrial contig of 967,100 bp with an average read coverage of 122 × and a GC content of 46.6%. This draft mitochondrial genome contains a rich 64-gene set, similar to those of Liriodendron and Nymphaea, including 41 protein-coding genes, 20 tRNAs, and 3 rRNAs. Twenty cis-spliced and five trans-spliced introns break ten protein-coding genes in the Magnolia mt genome. Repeated sequences account for 27% of the draft genome, with 17 out of the 1,145 repeats showing recombination evidence. Although partially assembled, the approximately 1-Mb mt genome of Magnolia is still among the largest in angiosperms, which is possibly due to the expansion of repeated sequences, retention of ancestral mtDNAs, and the incorporation of nuclear genome sequences. Mitochondrial phylogenomic analysis of the concatenated datasets of 38 conserved protein-coding genes from 91 representatives of angiosperm species supports the sister relationship of magnoliids with monocots and eudicots, which is congruent with plastid evidence.

]]>
<![CDATA[Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish]]> https://www.researchpad.co/article/N4fc7d71e-6de4-4251-8df9-22327ccf5952

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.

]]>
<![CDATA[Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants]]> https://www.researchpad.co/article/N5b247304-1d00-43fd-b420-e8221d78c971

Significance

Specialized castes are seen as phenotypic innovations necessary for ecological and evolutionary success in social insects. Nevertheless, how castes evolve adaptively as a lineage fills ecological space has remained unaddressed. Recent work with turtle ants has established that head shape and size in the iconic soldier caste, specialized for nest entrance defense, determine two key aspects of nesting ecology. Here species-level comparative analyses reveal that the evolution of head shape and size is extensively reversible, repeatable, and decoupled within the soldier caste and relative to the queen caste, underpinning the lineage’s diverse nesting ecology. These findings reshape our understanding of caste evolution, rejecting a stable, directional process in favor of a dynamic process of adaptive fitting between phenotype and environment.

]]>
<![CDATA[Fitness Barriers Limit Reversion of a Proofreading-Deficient Coronavirus]]> https://www.researchpad.co/article/Nf4727143-b683-4d6f-8f16-7d8f7609ceac

Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants.

]]>
<![CDATA[Footprints of natural selection at the mannose-6-phosphate isomerase locus in barnacles]]> https://www.researchpad.co/article/Nf48439d4-8849-4b30-8189-5acfa4360c50

Significance

The rocky intertidal is a natural laboratory to study how natural selection acts on the genes and proteins responsible for organismal survival and reproduction. Alternative forms of enzymes that differ across the intertidal have been known for decades and have provided examples of selection, but the genetic basis of such enzyme variation is known in only a few cases. In this paper, we present molecular evidence of natural selection at the Mpi gene, a key enzyme in energy metabolism that alters survival of barnacles living across the stress gradient imposed by the intertidal. Our study demonstrates how natural selection can facilitate survival in highly heterogeneous environments through the maintenance of multiple molecular solutions to ecological stresses.

]]>
<![CDATA[The characterization of mobile colistin resistance (mcr) genes among 33 000 Salmonella enterica genomes from routine public health surveillance in England]]> https://www.researchpad.co/article/Nebb16e3f-535d-4c32-ab0a-5067b3384a66

To establish the prevalence of mobile colistin resistance (mcr) genes amongst Salmonella enterica isolates obtained through public health surveillance in England (April 2014 to September 2017), 33 205 S . enterica genome sequences obtained from human, food, animal and environmental isolates were screened for the presence of mcr variants 1 to 8. The mcr-positive genomes were assembled, annotated and characterized according to plasmid type. Nanopore sequencing was performed on six selected isolates with putative novel plasmids, and phylogenetic analysis was used to provide an evolutionary context for the most commonly isolated clones. Fifty-two mcr-positive isolates were identified, of which 32 were positive for mcr-1, 19 for mcr-3 and 1 for mcr-5. The combination of Illumina and Nanopore sequencing identified three novel mcr-3 plasmids and one novel mcr-5 plasmid, as well as the presence of chromosomally integrated mcr-1 and mcr-3. Monophasic S. enterica serovar Typhimurium accounted for 27/52 (52 %) of the mcr-positive isolates, with the majority clustering in clades associated with travel to Southeast Asia. Isolates in these clades were associated with a specific plasmid range and an additional extended-spectrum beta-lactamase genotype. Routine whole-genome sequencing for public health surveillance provides an effective screen for novel and emerging antimicrobial determinants, including mcr. Complementary long-read technologies elucidated the genomic context of resistance determinants, offering insights into plasmid dissemination and linkage to other resistance genes.

]]>