ResearchPad - fatty-liver https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Ablation of <i>Iah1</i>, a candidate gene for diet-induced fatty liver, does not affect liver lipid accumulation in mice]]> https://www.researchpad.co/article/elastic_article_14595 Nonalcoholic fatty liver disease (NAFLD) is a pathological condition caused by excess triglyceride deposition in the liver. The SMXA-5 severe fatty liver mouse model has been established from the SM/J and A/J strains. To explore the genetic factors involved in fatty liver development in SMXA-5 mice, we had previously performed quantitative trait locus (QTL) analysis, using (SM/J×SMXA-5)F2 intercross mice, and identified Fl1sa on chromosome 12 (centromere-53.06 Mb) as a significant QTL for fatty liver. Furthermore, isoamyl acetate-hydrolyzing esterase 1 homolog (Iah1) was selected as the most likely candidate gene for Fl1sa. Iah1 gene expression in fatty liver-resistant A/J-12SM mice was significantly higher than in fatty liver-susceptible A/J mice. These data indicated that the Iah1 gene might be associated with fatty liver development. However, the function of murine Iah1 remains unknown. Therefore, in this study, we created Iah1 knockout (KO) mice with two different backgrounds [C57BL/6N (B6) and A/J-12SM (A12)] to investigate the relationship between Iah1 and liver lipid accumulation. Liver triglyceride accumulation in Iah1-KO mice of B6 or A12 background did not differ from their respective Iah1-wild type mice under a high-fat diet. These results indicated that loss of Iah1 did not contribute to fatty liver. On the other hands, adipose tissue dysfunction causes lipid accumulation in ectopic tissues (liver, skeletal muscle, and pancreas). To investigate the effect of Iah1 deficiency on white adipose tissue, we performed DNA microarray analysis of epididymal fat in Iah1-KO mice of A12 background. This result showed that Iah1 deficiency might decrease adipokines Sfrp4 and Metrnl gene expression in epididymal fat. This study demonstrated that Iah1 deficiency did not cause liver lipid accumulation and that Iah1 was not a suitable candidate gene for Fl1sa.

]]>
<![CDATA[A pilot study of ex-vivo MRI-PDFF of donor livers for assessment of steatosis and predicting early graft dysfunction]]> https://www.researchpad.co/article/elastic_article_14544 The utility of ex vivo Magnetic resonance imaging proton density fat fraction (MRI-PDFF) in donor liver fat quantification is unknown.PurposeTo evaluate the diagnostic accuracy and utility in predicting early allograft dysfunction (EAD) of ex vivo MRI-PDFF measurement of fat in deceased donor livers using histology as the gold standard.MethodsWe performed Ex vivo, 1.5 Tesla MRI-PDFF on 33 human deceased donor livers before implantation, enroute to the operating room. After the exclusion of 4 images (technical errors), 29 MRI images were evaluable. Histology was evaluable in 27 of 29 patients. EAD was defined as a peak value of aminotransferase >2000 IU/mL during the first week or an INR of ≥1.6 or bilirubin ≥10 mg/dL at day 7.ResultsMRI-PDFF values showed a strong positive correlation (Pearson’s correlation coefficient) when histology (macro-steatosis) was included (r = 0.78, 95% confidence interval 0.57‐0.89, p<0.0001). The correlation appeared much stronger when macro plus micro-steatosis were included (r = 0.87, 95% confidence interval 0.72‐0.94, p<0.0001). EAD was noted in 7(25%) subjects. AUC (Area Under the Curve) for macro steatosis (histology) predicted EAD in 73% (95% CI: 48–99), micro plus macro steatosis in 76% (95% CI: 49–100). AUC for PDFF values predicted EAD in 67(35–98). Comparison of the ROC curves in a multivariate model revealed, adding MRI PDFF values to macro steatosis increased the ability of the model in predicting EAD (AUC: 79%, 95% CI: 59–99), and addition of macro plus micro steatosis based on histology predicted EAD even better (AUC: 90%: 79–100, P = 0.054).ConclusionIn this pilot study, MRI-PDFF imaging showed potential utility in quantifying hepatic steatosis ex-vivo donor liver evaluation and the ability to predict EAD related to severe allograft steatosis in the recipient. ]]> <![CDATA[Improvement of steatotic rat liver function with a defatting cocktail during <i>ex situ</i> normothermic machine perfusion is not directly related to liver fat content]]> https://www.researchpad.co/article/elastic_article_13803 There is a significant organ shortage in the field of liver transplantation, partly due to a high discard rate of steatotic livers from donors. These organs are known to function poorly if transplanted but make up a significant portion of the available pool of donated livers. This study demonstrates the ability to improve the function of steatotic rat livers using a combination of ex situ machine perfusion and a “defatting” drug cocktail. After 6 hours of perfusion, defatted livers demonstrated lower perfusate lactate levels and improved bile quality as demonstrated by higher bile bicarbonate and lower bile lactate. Furthermore, defatting was associated with decreased gene expression of pro-inflammatory cytokines and increased expression of enzymes involved in mitochondrial fatty acid oxidation. Rehabilitation of marginal or discarded steatotic livers using machine perfusion and tailored drug therapy can significantly increase the supply of donor livers for transplantation.

]]>
<![CDATA[Epidermal growth factor receptor inhibition attenuates non-alcoholic fatty liver disease in diet-induced obese mice]]> https://www.researchpad.co/article/5c673077d5eed0c484f37b8e

Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disease. NAFLD begins with excessive lipid accumulation in the liver and progresses to nonalcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is closely linked to dysregulated hepatic lipid metabolism. Although recent studies have reported that epidermal growth factor receptor (EGFR) signaling regulates lipid metabolism, the roles of EGFR and EGFR inhibitors as modulators of lipid metabolism are largely unknown. Here, we investigated whether inhibiting EGFR using the EGFR tyrosine kinase inhibitor (TKI) PD153035 improves NAFLD. Our results demonstrate that EGFR was activated in liver tissues from high fat diet (HFD)-induced NAFLD mice. Inhibiting EGFR using PD153035 significantly reduced phosphatidylinositol-3-kinase/protein kinase B signaling and sterol responsive elementary binding protein 1 and 2 expression, which prevented HFD-induced hepatic steatosis and hypercholesterolemia by reducing de novo lipogenesis and cholesterol synthesis and enhancing fatty acid oxidation. Additionally, inhibiting EGFR improved HFD-induced glucose intolerance. In conclusion, these results indicate that EGFR plays an important role in NAFLD and is a potential therapeutic target.

]]>
<![CDATA[Fc gamma RIIb expression levels in human liver sinusoidal endothelial cells during progression of non-alcoholic fatty liver disease]]> https://www.researchpad.co/article/5c59fedbd5eed0c48413572f

Liver sinusoidal endothelial cells (LSECs) play a pivotal role in hepatic function and homeostasis. LSEC dysfunction has been recognized to be closely involved in various liver diseases, including non-alcoholic steatohepatitis (NASH), but not much is known about the fate of the scavenger receptors in LSECs during NASH. Fc gamma receptor IIb (FcγRIIb), known as a scavenger receptor, contributes to receptor-mediated endocytosis and immune complexes clearance. In this study, to elucidate the fate of FcγRIIb in the progression of non-alcoholic fatty liver disease (NAFLD), we examined FcγRIIb levels in NAFLD biopsy specimens by immunohistochemistry, and investigated their correlation with the exacerbation of biological indexes and clinicopathological scores of NASH. The FcγRIIb expression levels indicated significant negative correlations with serum levels of blood lipids (triglyceride, total cholesterol, high-density lipoprotein-cholesterol), type 4 collagen and hyaluronic acid, which are involved in hepatic lipid metabolism disorder, fibrosis, and inflammation, respectively. However, there was no significant difference of FcγRIIb expression levels among the pathological grades of NAFLD. During NAFLD progression, inflammation and fibrosis may influence the expression of FcγRIIb and their scavenger functions to maintain hepatic homeostasis.

]]>
<![CDATA[Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway]]> https://www.researchpad.co/article/5c59fed6d5eed0c48413570c

Alcoholic liver disease (ALD) is a worldwide health problem and hepatocyte apoptosis has been associated with the development/progression of ALD. However, no definite effective pharmacotherapy for ALD is currently available. Cilostazol, a selective type III phosphodiesterase inhibitor has been shown to protect hepatocytes from ethanol-induced apoptosis. In the present study, the underlying mechanisms for the protective effects of cilostazol were examined. Primary rat hepatocytes were treated with ethanol in the presence or absence of cilostazol. Cell viability and intracellular cAMP were measured. Apoptosis was detected by Hoechst staining, TUNEL assay, and caspase-3 activity assay. The roles of cAMP and AMP-activated protein kinase (AMPK) pathways in the action of CTZ were explored using pharmacological inhibitors and siRNAs. Liver from mice received ethanol (5 g/kg body weight) by oral gavage following cilostazol treatment intraperitoneally was obtained for measurement of apoptosis and activation of AMPK pathway. Cilostazol inhibited ethanol-induced hepatocyte apoptosis and potentiated the increases in cAMP level induced by forskolin. However, the anti-apoptotic effect of cilostazol was not reversed by an inhibitor of adenylyl cyclase. Interestingly, cilostazol activated AMPK and increased the level of LC3-II, a marker of autophagy. The inhibition of AMPK abolished the effects of cilostazol on LC3-II expression and apoptosis. Moreover, the inhibition of LKB1 and CaMKK2, upstream kinases of AMPK, dampened cilostazol-inhibited apoptosis as well as AMPK activation. In conclusion, cilostazol protected hepatocytes from apoptosis induced by ethanol mainly via AMPK pathway which is regulated by both LKB1 and CaMKK2. Our results suggest that cilostazol may have potential as a promising therapeutic drug for treatment of ALD.

]]>
<![CDATA[Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice]]> https://www.researchpad.co/article/5c58d659d5eed0c484031c64

Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 μg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in β-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic β-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of β-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.

]]>
<![CDATA[Omega-3 and -6 fatty acid plasma levels are not associated with liver cirrhosis-associated systemic inflammation]]> https://www.researchpad.co/article/5c5ca296d5eed0c48441e70f

Background

Liver cirrhosis is associated with profound immunodysfunction, i.e. a parallel presence of chronic systemic inflammation and immunosuppression, which can result in acute-on-chronic liver failure (ACLF). Omega-3 fatty acids are precursors of pro-resolving mediators and support the resolution of inflammation.

Objective

The aim of this study was to determine plasma levels of omega-3 fatty acids in patients with liver cirrhosis and ACLF.

Methods

Patients with liver cirrhosis with and without ACLF were enrolled in a prospective cohort study and analyzed post-hoc for the present sub-study. Clinical data and biomaterials were collected at baseline and at day 7, 28 and after 3 months of follow-up. Plasma concentrations of arachidonic acid (ARA) and docosahexaenoic acid (DHA), which represent key omega-6 and -3 fatty acids, respectively, were quantified and associated with markers of systemic inflammation and severity of liver cirrhosis.

Results

A total of 117 patients were included in the present analyses. Of those, 26 (22.2%), 51 (43.6%) and 40 (34.2%) patients had compensated or decompensated liver cirrhosis, and ACLF. Plasma levels of ARA and DHA were similar in patients with compensated cirrhosis, decompensated cirrhosis, and ACLF. Furthermore, no significant association between plasma ARA or DHA and C-reactive protein or peripheral blood leukocytes were observed (P>0.05).

Conclusion

In our study plasma levels of key omega-3 and omega-6 fatty acid are neither associated with the severity of liver cirrhosis nor with liver-cirrhosis-associated systemic inflammation.

]]>
<![CDATA[Decreased lung function is associated with risk of developing non-alcoholic fatty liver disease: A longitudinal cohort study]]> https://www.researchpad.co/article/5c521812d5eed0c484797204

Background

Decreased lung function is associated with non-alcoholic fatty liver disease (NAFLD), based on linking mechanisms such as insulin resistance and systemic inflammation However, its association with the risk of developing NAFLD is unclear. Our aim was to investigate whether baseline lung function is associated with incident NAFLD in middle-aged healthy Koreans.

Methods

A cohort study of 96,104 subjects (mean age: 35.7 years) without NAFLD were followed up from 2002 to 2015. NAFLD was diagnosed by ultrasound after the exclusion of other possible causes of liver diseases. Baseline percent predicted forced expiratory volume in one second (FEV1%) and forced vital capacity (FVC%) were categorized in quartiles. Adjusted hazard ratios (aHR) and 95% confidence intervals (CIs) (using the highest quartile as reference) were calculated for incident NAFLD at follow-up, controlling for covariates and potential confounders.

Results

During 579,714.5 person-years of follow-up, 24,450 participants developed NAFLD (incidence rate, 42.2 per 1,000 person-years). The mean follow-up period was 5.9±3.4 years. Regardless of smoking history, the risk for incident NAFLD increased with decreasing quartiles of FEV1 (%) and FVC (%) in a dose-response manner (p for trend<0.001). In never smokers, the aHRs (95% CIs) for incident NAFLD were 1.15 (1.08–1.21), 1.11 (1.05–1.18), and 1.08 (1.02–1.14) in quartiles 1–3 for FEV1 (%) and 1.12 (1.06–1.18), 1.11 (1.05–1.18), and 1.09 (1.03–1.15) in quartiles 1–3 for FVC (%), compared with the highest quartile reference. Similar inverse association was present in smoke-exposed subjects (aHR for incident NAFLD were 1.14, 1.21, 1.13 and 1.17, 1.11, 1.09 across FEV1(%) and FVC(%) quartile in increasing order, respectively).

Conclusions

Reduced lung function was a risk factor for incident NAFLD in a large middle-aged Korean cohort with over half a million person-years of follow-up.

]]>
<![CDATA[Screening dietary biochanin A, daidzein, equol and genistein for their potential to increase DHA biosynthesis in rainbow trout (Oncorhynchus mykiss)]]> https://www.researchpad.co/article/5c478c8bd5eed0c484bd2fbe

Plant oil utilization in aquafeeds is still the most practical option, although it decreases the content of the nutritionally highly valuable omega-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) in fish. Phytoestrogens and their metabolites are putatively able to affect genes encoding proteins centrally involved in the biosynthesis of EPA and DHA due to their estrogenic potential. Thus, the aim of the study was to screen the potential of the phytoestrogens to stimulate the biosynthesis of EPA and DHA in rainbow trout (Oncorhynchus mykiss). Additionally, the potential effects on growth performance, nutrient composition and hepatic lipid metabolism in rainbow trout were investigated. For that, a vegetable oil based diet served as a control diet (C) and was supplemented with 15 g/kg dry matter of biochanin A (BA), daidzein (DA), genistein (G) and equol (EQ), respectively. These five diets were fed to rainbow trout (initial body weight 83.3 ± 0.4 g) for 52 days. Growth performance and nutrient composition of whole body homogenates were not affected by the dietary treatments. Furthermore, feeding EQ to rainbow trout significantly increased DHA levels by +8% in whole body homogenates compared to samples of fish fed the diet C. A tendency towards increased DHA levels in whole body homogenates was found for fish fed the diet G. Fish fed diets BA and DA lacked these effects. Moreover, EQ and G fed fish showed significantly decreased hepatic mRNA steady state levels for fatty acyl desaturase 2a (delta-6) (fads2a(d6)). In contrast, carnitine palmitoyl transferases 1 (cpt1) hepatic mRNA steady state levels and hepatic Fads2a(d6) protein contents were not affected by the dietary treatment. In conclusion, when combined with dietary vegetable oils, equol and genistein seem to stimulate the biosynthesis of DHA and thereby increase tissue DHA levels in rainbow trout, however, only to a moderate extent.

]]>
<![CDATA[Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis]]> https://www.researchpad.co/article/5c23f26ed5eed0c484046a2b

Nonalcoholic fatty liver disease (NAFLD) is characterized by abnormal accumulation of triglycerides (TG) in the liver and other metabolic syndrome symptoms, but its molecular genetic causes are not completely understood. Here, we show that mice deficient for ubiquitin ligase (E3) Smad ubiquitin regulatory factor 1 (Smurf1) spontaneously develop hepatic steatosis as they age and exhibit the exacerbated phenotype under a high-fat diet (HFD). Our data indicate that loss of Smurf1 up-regulates the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes involved in lipid synthesis and fatty acid uptake. We further show that PPARγ is a direct substrate of Smurf1-mediated non-proteolytic lysine 63 (K63)-linked ubiquitin modification that suppresses its transcriptional activity, and treatment of Smurf1-deficient mice with a PPARγ antagonist, GW9662, completely reversed the lipid accumulation in the liver. Finally, we demonstrate an inverse correlation of low SMURF1 expression to high body mass index (BMI) values in human patients, thus revealing a new role of SMURF1 in NAFLD pathogenesis.

]]>
<![CDATA[High prevalence of nonalcoholic steatohepatitis and abnormal liver stiffness in a young and obese Mexican population]]> https://www.researchpad.co/article/5c390bdbd5eed0c48491eaee

Objective

To identify nonalcoholic steatohepatitis (NASH) and liver stiffness in Mexican subjects with different body mass index (BMI).

Methods

A cross-sectional study was conducted in 505 adults. Risk for NASH was defined as the presence of one or more of the following biochemical and metabolic parameters (BMPs): fasting glucose ≥100 mg/dl, triglycerides (TG) ≥150 mg/dl, homeostatic model assessment of insulin resistance (HOMA-IR) ≥2.5, aspartate aminotransferase (AST) >54 IU/L and alanine aminotransferase (ALT) >42 IU/L. Body mass index measurement and nutritional assessment were performed by standard procedures. Liver fibrosis stage was determined by liver stiffness measurement using transitional elastography (TE) or by liver biopsy (LB).

Results

Risk for NASH was 57% (290/505). Most BMPs values incremented by BMI category. Among 171 at-risk patients, 106 subjects were evaluated by TE and 65 subjects by LB. Abnormal liver stiffness (≥6.0 kPa) was prevalent in 54% (57/106) of the cases, whereas by LB, 91% (59/65) of patients with obesity had NASH and liver fibrosis. Furthermore, liver fibrosis was prevalent in 46% (6/13) in normal weight individuals, whereas 4.6% (3/65) of patients with a BMI ≥ 35 kg/m2 showed no histopathological abnormalities. Overall, 67.8% (116/171) of the patients had abnormal liver stiffness or NASH. The normal weight patients with liver damage consumed relatively a higher fat-rich diet compared to the other groups whereas the remaining subgroups shared a similar dietary pattern.

Conclusion

Young patients with overweight and obesity showed a high prevalence of altered BMPs related to abnormal liver stiffness assessed by TE and NASH by LB. Early diagnostic strategies are required to detect the risk for NASH and avoid further liver damage in populations with a rising prevalence of obesity by defining the risk factors involved in the onset and progression of NASH.

]]>
<![CDATA[Measurement of liver iron by magnetic resonance imaging in the UK Biobank population]]> https://www.researchpad.co/article/5c26973bd5eed0c48470efe9

The burden of liver disease continues to increase in the UK, with liver cirrhosis reported to be the third most common cause of premature death. Iron overload, a condition that impacts liver health, was traditionally associated with genetic disorders such as hereditary haemochromatosis, however, it is now increasingly associated with obesity, type-2 diabetes and non-alcoholic fatty liver disease. The aim of this study was to assess the prevalence of elevated levels of liver iron within the UK Biobank imaging study in a cohort of 9108 individuals. Magnetic resonance imaging (MRI) was undertaken at the UK Biobank imaging centre, acquiring a multi-echo spoiled gradient-echo single-breath-hold MRI sequence from the liver. All images were analysed for liver iron and fat (expressed as proton density fat fraction or PDFF) content using LiverMultiScan. Liver iron was measured in 97.3% of the cohort. The mean liver iron content was 1.32 ± 0.32 mg/g while the median was 1.25 mg/g (min: 0.85 max: 6.44 mg/g). Overall 4.82% of the population were defined as having elevated liver iron, above commonly accepted 1.8 mg/g threshold based on biochemical iron measurements in liver specimens obtained by biopsy. Further analysis using univariate models showed elevated liver iron to be related to male sex (p<10−16, r2 = 0.008), increasing age (p<10−16, r2 = 0.013), and red meat intake (p<10−16, r2 = 0.008). Elevated liver fat (>5.6% PDFF) was associated with a slight increase in prevalence of elevated liver iron (4.4% vs 6.3%, p = 0.0007). This study shows that population studies including measurement of liver iron concentration are feasible, which may in future be used to better inform patient stratification and treatment.

]]>
<![CDATA[Liver steatosis and dyslipidemia after HCV eradication by direct acting antiviral agents are synergistic risks of atherosclerosis]]> https://www.researchpad.co/article/5c26972cd5eed0c48470ed67

Aim

We comprehensively analyzed how hepatitis C virus (HCV) eradication by interferon (IFN)-free direct-acting-antiviral-agents (DAAs) affects liver steatosis and atherogenic risk.

Methods

Patients treated with IFN-free-DAAs who underwent transient elastography before and at 24-weeks post-treatment, including controlled attenuation parameter (CAP), and achieved sustained viral response (SVR) were enrolled. The association between changes in liver steatosis, lipid-metabolism, and genetic and clinical factors was analyzed.

Results

A total of 117 patients were included. The mean CAP and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated at SVR24. However, baseline LDL-C and CAP values were significantly negatively correlated with changes in these values after HCV eradication, indicating that in patients with high baseline values, the values generally decreased after HCV eradication. Mean small-dense LDL-C (sdLDL-C), which has greater atherogenic potential, was significantly elevated only in patients with both dyslipidemia (LDL-C >140 mg/dL) and liver steatosis (CAP >248 dB/m) at SVR24. Those patients had significant higher baseline BMI, LDL-C, and total-cholesterol levels.

Conclusions

Generally, successful HCV eradication by IFN-free-DAAs decreases CAP and LDL-C in patients with high baseline values. However, elevated LDL-C was accompanied with elevated sdLDL-C only in patients with liver steatosis and dyslipidemia at SVR24; therefore, those patients may require closer monitoring.

]]>
<![CDATA[Association between cagA negative Helicobacter pylori status and nonalcoholic fatty liver disease among adults in the United States]]> https://www.researchpad.co/article/5b8acdf540307c144d0de05d

We investigated the relationship of H. pylori stratified by cytotoxin-associated gene A (cagA) status with nonalcoholic fatty liver disease (NAFLD) in the general population of the United States (US). We utilized the Third National Health and Nutrition Examination Survey from 1988 to 1994 in this study. NAFLD was defined by ultrasonographic detection of hepatic steatosis in the absence of other known causes of liver diseases and significant alcohol consumption. Hepatic steatosis was assessed by parenchymal brightness, liver to kidney contrast, deep beam attenuation, bright vessel walls and gallbladder wall definition. Antibodies to H. pylori and cagA of participants were measured using H. pylori IgG and anti-cagA IgG enzyme-linked immunosorbent assays. Among 5,404 participants, the prevalence of NAFLD was higher in H. pylori positive subjects (33.5±1.8%) compared to H. pylori negative subjects (26.1±1.7%, p <0.001). In terms of cagA protein status stratification, while cagA positive H. pylori group did not demonstrate an association with NAFLD (OR: 1.05; 95% CI: 0.81–1.37), cagA negative H. pylori group was noted to have a significant association with NAFLD in a multivariable analysis (OR: 1.30; 95% CI: 1.01–1.67). In conclusion, our study demonstrated that cagA negative H. pylori infection was an independent predictor of NAFLD in the US general population.

]]>
<![CDATA[At similar weight loss, dietary composition determines the degree of glycemic improvement in diet-induced obese C57BL/6 mice]]> https://www.researchpad.co/article/5b603630463d7e4090b7ce1f

Background

Achieving weight loss is the cornerstone of the treatment of the metabolic consequences of obesity, in particular of glucose intolerance.

Objective

To determine whether improvement in glucose control depends on dietary macronutrient composition of the diet at identical weight loss.

Materials and methods

Twenty-two weeks old diet-induced obese C57BL/6 mice lost weight through caloric restriction on normal chow (R-NC) or high fat diet (R-HF). Control mice were fed normal chow (LEAN) or high fat diet (OBESE) ad libitum. Body weight and composition were assessed after 8 weeks of dietary intervention. Glucose homeostasis was evaluated by intraperitoneal glucose tolerance tests (IPGTT). Epididymal white adipose (eWAT) and hepatic tissues were analyzed by immunohistochemistry and RT-qPCR.

Results

By 30 weeks of age, the body weight of the mice on R-NC (31.6±1.7g, mean±SEM) and R-HF (32.3±0.9g) was similar to LEAN mice (31.9±1.4g), while OBESE mice weighed 51.7±2.4g. Glucose tolerance in R-NC was better than in LEAN mice (69% AUC IPGTT, P 0.0168) whereas R-HF mice remained significantly less glucose tolerant (125% AUC IPGTT, P 0.0279 vs LEAN), despite identical weight loss. The eWAT pads and adipocyte size were similar in LEAN and R-NC mice, while the eWAT pad size of R-HF was 180% of R-NC (P < 0.0001) and the average adipocyte size of R-HF mice was 134% of R-NC fed mice (P 0.0285). No LEAN or R-NC mice had hepatic steatosis, in contrast to 28.6% of R-HF mice. Compared to OBESE mice, inflammatory markers were lower in eWAT and liver tissue of R-NC, but not in R-HF mice. Measures of visceral adiposity correlated well with glucose tolerance parameters.

Conclusions

In mice, caloric restriction on a normal chow diet improved glucose tolerance significantly more when identical weight loss was achieved on a high fat diet.

]]>
<![CDATA[Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice]]> https://www.researchpad.co/article/5989db37ab0ee8fa60bd3827

To identify differentially expressed hepatic genes contributing to the improvement of high-fat (HF) diet-induced hepatic steatosis and insulin resistance following supplementation of partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd), diet-induced obese (DIO) mice were fed HF diets containing either ChrSd or microcrystalline cellulose (MCC, control) for 5 weeks. The 2-h insulin area under the curve was significantly lowered by ChrSd, indicating that ChrSd improved insulin sensitivity. ChrSd intake also significantly reduced body weight gain, liver and adipose tissue weight, hepatic lipid content, and plasma low-density lipoprotein (LDL)-cholesterol, despite a significant increase in food intake. Exon microarray analysis of hepatic gene expression revealed down-regulation of genes related to triglyceride and ceramide synthesis, immune response, oxidative stress, and inflammation and upregulation of genes related to fatty acid oxidation, cholesterol, and bile acid synthesis. In conclusion, the effects of ChrSd supplementation in a HF diet on weight gain, insulin resistance, and progression of hepatic steatosis in DIO mice were associated with modulation of hepatic genes related to oxidative stress, inflammation, ceramide synthesis, and lipid and cholesterol metabolism.

]]>
<![CDATA[Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease]]> https://www.researchpad.co/article/5989d9f6ab0ee8fa60b701f0

Background & Aims

Non-alcoholic fatty liver disease (NAFLD) is characterized by dysbiosis. The bidirectional effects between intestinal microbiota (IM) and bile acids (BA) suggest that dysbiosis may be accompanied by an altered bile acid (BA) homeostasis, which in turn can contribute to the metabolic dysregulation seen in NAFLD. This study sought to examine BA homeostasis in patients with NAFLD and to relate that with IM data.

Methods

This was a prospective, cross-sectional study of adults with biopsy-confirmed NAFLD (non-alcoholic fatty liver: NAFL or non-alcoholic steatohepatitis: NASH) and healthy controls (HC). Clinical and laboratory data, stool samples and 7-day food records were collected. Fecal BA profiles, serum markers of BA synthesis 7-alpha-hydroxy-4-cholesten-3-one (C4) and intestinal BA signalling, as well as IM composition were assessed.

Results

53 subjects were included: 25 HC, 12 NAFL and 16 NASH. Levels of total fecal BA, cholic acid (CA), chenodeoxycholic acid (CDCA) and BA synthesis were higher in patients with NASH compared to HC (p<0.05 for all comparisons). The primary to secondary BA ratio was higher in NASH compared to HC (p = 0.004), but ratio of conjugated to unconjugated BAs was not different between the groups. Bacteroidetes and Clostridium leptum counts were decreased in in a subset of 16 patients with NASH compared to 25 HC, after adjusting for body mass index and weight-adjusted calorie intake (p = 0.028 and p = 0.030, respectively). C. leptum was positively correlated with fecal unconjugated lithocholic acid (LCA) (r = 0.526, p = 0.003) and inversely with unconjugated CA (r = -0.669, p<0.0001) and unconjugated CDCA (r = - 0.630, p<0.0001). FGF19 levels were not different between the groups (p = 0.114).

Conclusions

In adults with NAFLD, dysbiosis is associated with altered BA homeostasis, which renders them at increased risk of hepatic injury.

]]>
<![CDATA[SteatoNet: The First Integrated Human Metabolic Model with Multi-layered Regulation to Investigate Liver-Associated Pathologies]]> https://www.researchpad.co/article/5989da20ab0ee8fa60b7e775

Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an approach most commonly applied in automotive and process industries, whereby individual objects correspond to functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation. SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of glucose, lipids and ketone bodies) where changes in flux distribution drive the healthy liver towards hepatic steatosis, the primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with complex hepatic metabolic disorders.

]]>
<![CDATA[White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice]]> https://www.researchpad.co/article/5989daaaab0ee8fa60ba90e3

Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

]]>