ResearchPad - fermentation https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Traditional milk transformation schemes in Côte d’Ivoire and their impact on the prevalence of <i>Streptococcus bovis</i> complex bacteria in dairy products]]> https://www.researchpad.co/article/elastic_article_14743 The Streptococcus bovis/Streptococcus equinus complex (SBSEC) and possibly Streptococcus infantarius subsp. infantarius (Sii) are associated with human and animal diseases. Sii predominate in spontaneously fermented milk products with unknown public health effects. Sii/SBSEC prevalence data from West Africa in correlation with milk transformation practices are limited. Northern Côte d’Ivoire served as study area due to its importance in milk production and consumption and to link a wider Sudano-Sahelian pastoral zone of cross-border trade. We aimed to describe the cow milk value chain and determine Sii/SBSEC prevalence with a cross-sectional study. Dairy production practices were described as non-compliant with basic hygiene standards. The system is influenced by secular sociocultural practices and environmental conditions affecting product properties. Phenotypic and molecular analyses identified SBSEC in 27/43 (62.8%) fermented and 26/67 (38.8%) unfermented milk samples. Stratified by collection stage, fermented milk at producer and vendor levels featured highest SBSEC prevalence of 71.4% and 63.6%, respectively. Sii with 62.8% and 38.8% as well as Streptococcus gallolyticus subsp. macedonicus with 7.0% and 7.5% were the predominant SBSEC species identified among fermented and unfermented milk samples, respectively. The population structure of Sii/SBSEC isolates seems to reflect evolving novel dairy-adapted, non-adapted and potentially pathogenic lineages. Northern Côte d’Ivoire was confirmed as area with high Sii presence in dairy products. The observed production practices and the high diversity of Sii/SBSEC supports in-depth investigations on Sii ecology niche, product safety and related technology in the dairy value chain potentially affecting large population groups across sub-Saharan Africa.

]]>
<![CDATA[An Out-of-Patagonia migration explains the worldwide diversity and distribution of <i>Saccharomyces eubayanus</i> lineages]]> https://www.researchpad.co/article/elastic_article_14503 Lager yeast history has intrigued scientists for decades. The recent isolation of S. eubayanus, the lager yeast ancestor, represents an unprecedented opportunity to extend our knowledge on yeast phylogeography and the origins of the S. pastorianus lager hybrid. However, the genetic, phenotypic and evolutionary history of this species remains poorly known. Our work demonstrates that S. eubayanus isolates from Patagonia have the greatest genetic diversity, comprising the largest number of lineages within a single geographic region and experienced ancestral and recent admixture between lineages, likely suggesting co-occurrence in Patagonia. Importantly, some isolates exhibited significant phenotypic differences for traits such as high temperature and ethanol tolerance, together with fermentation performance, demonstrating their potential in the brewing industry for the generation of new styles of lager beers. Furthermore, our results support the idea of colonization from peripheral glacial refugia from the South, as responsible for the high genetic diversity observed in southern Chilean Patagonia. Our results allow hypothesizing a successful physiological adjustment of the species to the local conditions in Patagonia, explaining its wide distribution in the southern hemisphere.

]]>
<![CDATA[Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance]]> https://www.researchpad.co/article/N1cdbe9e8-748c-4f6e-890d-3e880524e985

Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h−1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.

Electronic supplementary material

The online version of this article (10.1007/s10295-019-02243-w) contains supplementary material, which is available to authorized users.

]]>
<![CDATA[Bioconversion of fructus sophorae into 5,7,8,4’-tetrahydroxyis oflavone with Aspergillus aculeatus]]> https://www.researchpad.co/article/5c897726d5eed0c4847d2578

A fungus identified as Aspergillus aculeatus was used to biotransform genistein and glycosides to polyhydroxylated isoflavones. The strain was identified on the basis of colony morphology features and ITS rDNA sequence analysis. Phylogenetic tree was constructed to determine its taxonomic status. Genistein and glycosides were transformed by Aspergillus aculeatus to 5,7,8,4’- tetrahydroxyisoflavone. The chemical structure of the product was identified by high performance liquid chromatography(HPLC), liquid chromatography-mass spectrometry(LC/MS), Infrared spectroscopy (IR) and NMR spectrometer methods. The ITS rDNA sequence of the strain had 100% similarity with Aspergillus. Furthermore, it was ultimately identified as Aspergillus aculeatus. The metabolite of genistein and glycosides was identified as 5,7,8,4’-tetrahydroxyisoflavone. 120 mg 5,7,8,4’-tetrahydroxyisoflavone was made from 20 g fructus sophorae, which was bioconverted unconditionally by Aspergillus aculeatus for 96 h, and the purity was 96%. On the basis of the findings, Aspergillus aculeatus was a novel strain with specific ability to convert genistein and glycosides into 5,7,8,4’-tetrahydroxyisoflavone which had potential applications.

]]>
<![CDATA[Isolation and identification of aroma producing strain with esterification capacity from yellow water]]> https://www.researchpad.co/article/5c6f1540d5eed0c48467af8c

Kaoliang is a refreshing fragranced type of Chinese spirits with slight apple fragrance that comes from ethyl acetate (EA). Special aromas are produced by esterification microorganisms, which affect the taste and quality of the wine. In this study, new yeast strains were isolated from yellow water, a by-product during fermentation process. Meanwhile, the optimal culture condition was determined for its growth and EA production. Three new strains, Kazachstaniaexigua, Candida humilis and Saccharomyces cerevisiae were identified from yellow water. Among these strains, S. cerevisiae S5 was the new and dominant strain. Results from response surface methodology showed that S. cerevisiae S5 produced 161.88 ppm of EA, in the medium with 4.91% yeast extract, 9.82% peptone, and 20.91% glucose after 96 hours of cultivation at 27.53°C. GC analysis showed that aroma compounds, such as EA, isoamyl acetate and 2-phenylethanol increased from the sample of optimal condition when compared to the one from initial fermentation condition.

]]>
<![CDATA[Optimization of Ralstonia solanacearum cell growth using a central composite rotational design for the P(3HB) production: Effect of agitation and aeration]]> https://www.researchpad.co/article/5c59fecdd5eed0c484135550

The intracellular accumulation of polyhydroxyalkanoates (PHAs) normally occurs after cell growth, during the second fermentation stage and under nutrient-limited conditions in the presence of a carbon excess. However, some microorganisms are able to accumulate PHAs as poly(3-hydroxybutyrate) [P(3HB)] during the first fermentation stage, the cell growth phase, without nutrient limitation, once they have been reported to utilize type II metabolism during the polymer accumulation phase. This study evaluated the effect of aeration and agitation on cell growth and P(3HB) accumulation in Ralstonia solanacearum RS, performed in a bioreactor for 24h at 32°C. A 22 central composite rotational design (CCRD) was used, with agitation (150 to 250 rpm) and aeration (0.3 to 1 vvm) as independent variables and optical density (OD600nm), dry cell weight (DCW), and P(3HB) yield as dependent variables. A significant polymer accumulation, until 70% of P(3HB), was observed, proving that R. solanacearum RS exhibited metabolism type II, regardless of the aeration process. The best results were obtained for 1 vvm and 250 rpm (+1, +1), with values of OD600nm (18.04) and DCW (4.82 g.L-1).

]]>
<![CDATA[Machine learning framework for assessment of microbial factory performance]]> https://www.researchpad.co/article/5c478c5fd5eed0c484bd1ec8

Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess conditions. On the other hand, machine learning, complementary to metabolic modeling necessitates large amounts of data. Building such a database for metabolic engineering designs requires significant manpower and is prone to human errors and bias. We propose an approach to integrate data-driven methods with genome scale metabolic model for assessment of microbial bio-production (yield, titer and rate). Using engineered E. coli as an example, we manually extracted and curated a data set comprising about 1200 experimentally realized cell factories from ~100 papers. We furthermore augmented the key design features (e.g., genetic modifications and bioprocess variables) extracted from literature with additional features derived from running the genome-scale metabolic model iML1515 simulations with constraints that match the experimental data. Then, data augmentation and ensemble learning (e.g., support vector machines, gradient boosted trees, and neural networks in a stacked regressor model) are employed to alleviate the challenges of sparse, non-standardized, and incomplete data sets, while multiple correspondence analysis/principal component analysis are used to rank influential factors on bio-production. The hybrid framework demonstrates a reasonably high cross-validation accuracy for prediction of E.coli factory performance metrics under presumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8 and 0.93 on new data not seen by the model).

]]>
<![CDATA[Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts]]> https://www.researchpad.co/article/5c3fa5d6d5eed0c484ca92ab

Today’s beer market is challenged by a decreasing consumption of traditional beer styles and an increasing consumption of specialty beers. In particular, lager-type beers (pilsner), characterized by their refreshing and unique aroma and taste, yet very uniform, struggle with their sales. The development of novel variants of the common lager yeast, the interspecific hybrid Saccharomyces pastorianus, has been proposed as a possible solution to address the need of product diversification in lager beers. Previous efforts to generate new lager yeasts through hybridization of the ancestral parental species (S. cerevisiae and S. eubayanus) yielded strains with an aromatic profile distinct from the natural biodiversity. Unfortunately, next to the desired properties, these novel yeasts also inherited unwanted characteristics. Most notably is their phenolic off-flavor (POF) production, which hampers their direct application in the industrial production processes. Here, we describe a CRISPR-based gene editing strategy that allows the systematic and meticulous introduction of a natural occurring mutation in the FDC1 gene of genetically complex industrial S. cerevisiae strains, S. eubayanus yeasts and interspecific hybrids. The resulting cisgenic POF- variants show great potential for industrial application and diversifying the current lager beer portfolio.

]]>
<![CDATA[Physicochemical and microbiological characterization of the sensory deviation responsible for the origin of the special sherry wines "palo cortado" type]]> https://www.researchpad.co/article/5c1ab857d5eed0c484027a29

The aim of this study was to characterize the biochemical changes and microbiological processes involved in the sensory deviation of “sobretablas” wines during biological aging, which leads to the origin of special or rare “palo cortado” wines. Industrial trials of biological aging of “sobretablas” wines with the potential for the development of lactic acid bacteria (LAB) were performed to study this phenomenon. The results showed that sensory deviation was due to the development of malolactic fermentation (MLF) together with an attenuated aerobic metabolism of “flor” yeast. Malolactic fermentation (MLF) was promoted by the presence of malic acid concentrations that were higher than 1 g/L and the coexistence of LAB and “flor” velum yeast. Ethyl lactate, acetoin and 2,3-butanediol are some of the volatile compounds that are responsible for this sensory deviation. Wines with high levels of gluconic and malic acids (> 1 g/L) can cause, with very low probability, the sensory deviation of “palo cortado”. A lysozyme dose of 12 g/hL is an effective treatment to avoid malolactic fermentation (MFL) and sensory deviation. Understanding the biochemical and microbiological changes involved in sensory deviation can be useful to wineries as markers to identify the origin of the special sherry wines "palo cortado" type.

]]>
<![CDATA[Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa powder]]> https://www.researchpad.co/article/5b8acde340307c144d0de054

Jackfruit seeds are an under-utilized waste product in many tropical countries. In this work, we demonstrate the potential of roasted jackfruit seeds to substitute for cocoa powder in cappuccino formulations. Two different flours were produced from a hard variety jackfruit by drying or fermenting the seeds prior to roasting. Next, formulations were prepared with 50%, 75%, and 100% substitution of cocoa powder with jackfruit seed flours, totalizing seven with control formulation. The acceptance of cappuccinos by consumers (n = 126) and quantitative descriptive analysis (QDA®) were used to describe the preparations. Physicochemical properties were also evaluated. When 50% and 75% cocoa powder was replaced with dry jackfruit seed flour, there was no change in sensory acceptability or technological properties; however, it is possible to identify advantages tousing dry jackfruit seed flour, including moisture reduction and high wettability, solubility and sensory acceptation of the chocolate aroma. The principal component analysis of QDA explained90% variances; cluster analysis enabled the definition of four groups for six cappuccino preparations. In fact, dry jackfruit seed flour is an innovative cocoa powder substitute; it could be used in food preparations, consequently utilizing this tropical fruit waste by incorporating it as an ingredient in a common product of the human diet.

]]>
<![CDATA[Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration]]> https://www.researchpad.co/article/5b8acdef40307c144d0de05a

Few studies have examined the effects of feeding total mixed ration (TMR) versus roughage and concentrate separately (SF) on ruminant methane production. Therefore, this study compared differences in methane production, ruminal characteristics, total tract digestibility of nutrients, and rumen microbiome between the two feeding methods in Holstein steers. A total six Holstein steers of initial bodyweights 540 ± 34 kg were divided into two groups and assigned to a same experimental diet with two different feeding systems (TMR or SF) in a crossover design with 21 d periods. The experimental diet contained 73% concentrate and 27% forage and were fed twice a day. The total tract digestibility of crude protein, neutral detergent fibre, and organic matter were not affected by the two different feeding systems. Steers fed TMR emitted more methane (138.5 vs. 118.2 L/d; P < 0.05) and lost more gross energy as methane energy (4.0 vs. 3.5% gross energy intake; P = 0.005) compared to those fed SF. Steers fed TMR had greater (P < 0.05) total volatile fatty acid (VFA), ammonia-N concentrations and propionate proportion of total VFA at 1.5 h, whereas lower after that compared to steers fed SF. The greater (P < 0.05) acetate: propionate ratio at 4.5 h for steers fed TMR reflected the shift of H2 sink from propionate towards acetate synthesis. The lower (P < 0.05) isobutyrate and isovalerate proportions of total VFA observed in steers fed TMR implies decrease in net consumption of H2 for microbial protein synthesis compared to SF. There were no differences in both major bacterial and archaeal diversity between TMR and SF, unlike several minor bacterial abundances. The minor groups such as Coprococcus, Succiniclasticum, Butyrivibrio, and Succinivibrio were associated with the changes in ruminal VFA profiles or methanogenesis indirectly. Overall, these results indicate that SF reduces methane emissions from ruminants and increases propionate proportion of total VFA without affecting total tract digestion compared to TMR. There were no evidences that the response differed due to different major underlying microbial population.

]]>
<![CDATA[Trunk surface agarwood-inducing technique with Rigidoporus vinctus: An efficient novel method for agarwood production]]> https://www.researchpad.co/article/5c032e01d5eed0c4844f8ad4

Only when Aquilaria spp. or Gyrinops spp. trees are wounded, due to insect attack, or microbial invasion, agarwood can be successfully induced. In the present study, a fungus which can induce agarwood formation efficiently was isolated and a suitable method for its application to induce agarwood formation was developed. Rigidoporus vinctus was isolated from the inner layers from infectious A. sinensis trees. When the fermentation liquid of fungi inoculated back to A. sinensis tree, agarwood was found to be induced. In addition, a novel method called trunk surface agarwood-inducing technique (Agar-Sit) was developed to produce agarwood with R. vinctus. The alcohol soluble extract content of the agarwood, up to 38.9%, far higher than the requirement (10%) in Chinese Pharmacopoeia and the six characteristic compounds of agarwood used as Chinese Medicinal Materials were all detected. Their relative percentages of the sesquiterpenes in the essential oil were 22.76%. This is the first report of the Agar-Sit and also the application of R. vinctus in agarwood induction. According to the results, when the combination of Agar-Sit and R. vinctus is used agarwood can be induced with high yield and good quality.

]]>
<![CDATA[Characterization and Functional Analysis of 4-Coumarate:CoA Ligase Genes in Mul-berry]]> https://www.researchpad.co/article/5989d9fbab0ee8fa60b72164

A small, multigene family encodes 4-coumarate:CoA ligases (4CLs) that catalyze the ligation of CoA to hydroxycinnamic acids, a branch point directing metabolites to flavonoid or monolignol pathways. In this study, we characterized four 4CL genes from M. notabilis Genome Database, and cloned four Ma4CL genes from M. atropurpurea cv. Jialing No.40. A tissue-specific expression analysis indicated that Ma4CL3 was expressed at higher levels than the other genes, and that Ma4CL3 was strongly expressed in root bark, stem bark, and old leaves. Additionally, the expression pattern of Ma4CL3 was similar to the trend of the total flavonoid content throughout fruit development. A phylogenetic analysis suggested that Mn4CL1, Mn4CL2, and Mn4CL4 belong to class I 4CLs, and Mn4CL3 belongs to class II 4CLs. Ma4CL genes responded differently to a series of stresses. Ma4CL3 expression was higher than that of the other Ma4CL genes following wounding, salicylic acid, and ultraviolet treatments. An in vitro enzyme assay indicated that 4-coumarate acid was the best substrate among cinnamic acid, 4-coumarate acid, and caffeate acid, but no catalytic activity to sinapate acid and ferulate acid. The results of subcellular localization experiments showed that Ma4CL3 localized to the cytomembrane, where it activated transcription. We used different vectors and strategies to fuse Ma4CL3 with stilbene synthase (STS) to construct four Ma4CL-MaSTS co-expression systems to generate resveratrol. The results indicated that only a transcriptional fusion vector, pET-Ma4CL3-T-MaSTS, which utilized a T7 promoter and lac operator for the expression of MaSTS, could synthesize resveratrol.

]]>
<![CDATA[The Presence of Pretreated Lignocellulosic Solids from Birch during Saccharomyces cerevisiae Fermentations Leads to Increased Tolerance to Inhibitors – A Proteomic Study of the Effects]]> https://www.researchpad.co/article/5989da1bab0ee8fa60b7d022

The fermentation performance of Saccharomyces cerevisiae in the cellulose to ethanol conversion process is largely influenced by the components of pretreated biomass. The insoluble solids in pretreated biomass predominantly constitute cellulose, lignin, and -to a lesser extent- hemicellulose. It is important to understand the effects of water-insoluble solids (WIS) on yeast cell physiology and metabolism for the overall process optimization. In the presence of synthetic lignocellulosic inhibitors, we observed a reduced lag phase and enhanced volumetric ethanol productivity by S. cerevisiae CEN.PK 113-7D when the minimal medium was supplemented with WIS of pretreated birch or spruce and glucose as the carbon source. To investigate the underlying molecular reasons for the effects of WIS, we studied the response of WIS at the proteome level in yeast cells in the presence of acetic acid as an inhibitor. Comparisons were made with cells grown in the presence of acetic acid but without WIS in the medium. Altogether, 729 proteins were detected and quantified, of which 246 proteins were significantly up-regulated and 274 proteins were significantly down-regulated with a fold change≥1.2 in the presence of WIS compared to absence of WIS. The cells in the presence of WIS up-regulated several proteins related to cell wall, glycolysis, electron transport chain, oxidative stress response, oxygen and radical detoxification and unfolded protein response; and down-regulated most proteins related to biosynthetic pathways including amino acid, purine, isoprenoid biosynthesis, aminoacyl-tRNA synthetases and pentose phosphate pathway. Overall, the identified differentially regulated proteins may indicate that the likelihood of increased ATP generation in the presence of WIS was used to defend against acetic acid stress at the expense of reduced biomass formation. Although, comparative proteomics of cells with and without WIS in the acetic acid containing medium revealed numerous changes, a direct effect of WIS on cellular physiology remains to be investigated.

]]>
<![CDATA[New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone]]> https://www.researchpad.co/article/5989db0aab0ee8fa60bc9c44

Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines.

]]>
<![CDATA[Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba7ab2

α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application.

]]>
<![CDATA[Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca]]> https://www.researchpad.co/article/5989dafdab0ee8fa60bc563a

An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h.

]]>
<![CDATA[Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation]]> https://www.researchpad.co/article/5989da3dab0ee8fa60b88c75

In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.

]]>
<![CDATA[Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease]]> https://www.researchpad.co/article/5989daf9ab0ee8fa60bc3d72

Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung.

]]>
<![CDATA[Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling]]> https://www.researchpad.co/article/5989dabaab0ee8fa60bae4a7

Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L−1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L−1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L−1 (99.3%) and 75.1 ± 2.5 g·L−1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.

]]>