ResearchPad - fish-biology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations]]> https://www.researchpad.co/article/elastic_article_7672 The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015–16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.

]]>
<![CDATA[Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal]]> https://www.researchpad.co/article/5c6f14fcd5eed0c48467ac14

Nile tilapia (Oreochromis niloticus) is an African freshwater fish that displays a genetic sex determination system (XX|XY) where high temperatures (above 32°C to 36.5°C) induce masculinization. In Nile tilapia, the thermosensitive period was reported from 10 to 30 days post fertilization. In their natural environment, juveniles may encounter high temperatures that are above the optimal temperature for growth (27–30°C). The relevance of the thermal sex reversal mechanism in a natural context remains unclear. The main objective of our study is to determine whether sexually undifferentiated juveniles spontaneously prefer higher, unfavorable temperatures and whether this choice skews the sex ratio toward males. Five full-sib progenies (from 100% XX crosses) were subjected to (1) a horizontal three-compartment thermal step gradient (thermal continuum 28°C– 32°C– 36.5°C) during the thermosensitive period, (2) a control continuum (28°C– 28°C– 28°C) and (3) a thermal control tank (36.5°C). During the first days of the treatment, up to an average of 20% of the population preferred the masculinizing compartment of the thermal continuum (36.5°C) compared to the control continuum. During the second part of the treatment, juveniles preferred the lower, nonmasculinizing 32°C temperature. This short exposure to higher temperatures was sufficient to significantly skew the sex ratio toward males, compared to congeners raised at 28°C (from 5.0 ± 6.7% to 15.6 ± 16.5% of males). The proportion of males was significantly different in the thermal continuum, thermal control tank and control continuum, and it was positively correlated among populations. Our study shows for the first time that Nile tilapia juveniles can choose a masculinizing temperature during a short period of time. This preference is sufficient to induce sex reversal to males within a population. For the first time, behavior is reported as a potential player in the sex determination mechanism of this species.

]]>
<![CDATA[Breeding behavior in the blind Mexican cavefish and its river-dwelling conspecific]]> https://www.researchpad.co/article/5c76fe22d5eed0c484e5b593

Fish reproductive patterns are very diverse in terms of breeding frequency, mating system, sexual dimorphisms and selection, mate choice, spawning site choice, courtship patterns, spawning behaviors and parental care. Here we have compared the breeding behavior of the surface-dwelling and cave-dwelling morphs of the characiform A. mexicanus, with the goals of documenting the spawning behavior in this emerging model organism, its possible evolution after cave colonization, and the sensory modalities involved. Using infrared video recordings, we showed that cave and surface Astyanax spawning behavior is identical, occurs in the dark, and can be divided into 5 rapid phases repeated many times, about once per minute, during spawning sessions which last about one hour and involve one female and several males. Such features may constitute “pre-adaptive traits” which have facilitated fish survival after cave colonization, and may also explain how the two morphs can hybridize in the wild and in the laboratory. Accordingly, cross-breeding experiments involving females of one morphotype and males of the other morphotype showed the same behavior including the same five phases. However, breeding between cavefish females and surface fish males was more frequent than the reverse. Finally, cavefish female pheromonal solution was able to trigger strong behavioral responses in cavefish males–but not on surface fish males. Lastly, egg production seemed higher in surface fish females than in cavefish females. These results are discussed with regards to the sensory modalities involved in triggering reproductive behavior in the two morphs, as well as its possible ongoing evolution.

]]>
<![CDATA[A novel nonosteocytic regulatory mechanism of bone modeling]]> https://www.researchpad.co/article/5c5df343d5eed0c484581048

Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling—perhaps also in mammalian bones—and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.

]]>
<![CDATA[Anaesthetic efficacy of Aqui-S, Benzoak, and MS-222 on lumpfish (Cyclopterus lumpus) fries. Impact from temperature, salinity, and fasting]]> https://www.researchpad.co/article/5c50c45bd5eed0c4845e8624

Large numbers of lumpfish are produced for the Norwegian salmon industry and are used to combat sea lice infestations. Periodically high mortality of farmed lumpfish demonstrates the need to improve farming conditions and animal welfare. As part of such efforts, the present work tested the efficacy of three anaesthetic chemicals on lumpfish fries (average weight of 0.97 g). The anaesthetic impact from salinity (15 ppt–18 ppt), temperature (12°C versus 7 and 18°C), and fasting conditions (three days) was also examined. Surgical anaesthesia was induced within 3 to 5 min (preferred time) at concentrations of 18 mg/L (Aqui-S), 37.5 mg/L (Benzoak), and 60 mg/L (buffered MS-222). Safety margins were regarded as low when using Aqui-S; therefore, this chemical was not considered suitable for prolonged exposures. The lumpfish made a rapid recovery from both Benzoak and MS-222 even after 20 min of exposure. A 6°C increase in exposure temperature (reaching 18°C) was found to delay or inhibit recovery. The effect of a 5°C decrease (down to 7°C) significantly reduced induction time for MS-222 and was insignificant for Aqui-S, while it prolonged Benzoak induction time significantly and gave a longer recovery period. Fasting resulted in 70% recovery after 20 min of Aqui-S exposure compared to 0% in fed fish but had only minor effects on Benzoak and MS-222. Use of brackish water (15 ppt–18 ppt) gave 20% recovery from Aqui-S and significantly shorter recovery time from MS-222 exposure, while the effects on Benzoak were insignificant.

]]>
<![CDATA[Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures]]> https://www.researchpad.co/article/5c5217cdd5eed0c4847945e9

Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel.

]]>
<![CDATA[Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: An ecosystem modeling approach]]> https://www.researchpad.co/article/5c478c92d5eed0c484bd32a0

Benthic—pelagic coupling plays a pivotal role in aquatic ecosystems but the effects of fishery driven interactions on its functioning has been largely overlooked. Disentangling the benthic—pelagic links including effects of mixed fisheries, however, needs sketching a whole description of ecosystem interactions using quantitative tools. A holistic food web model has been here developed in order to understand the interplay between the benthic-pelagic coupling and mixed fisheries in a Mediterranean system such as the Strait of Sicily. The reconstruction of the food web required review and integration of a vast set of local and regional biological information from bacteria to large pelagic species that were aggregated into 72 functional groups. Fisheries were described by 18 fleet segments resulting from combination of fishing gears and fishing vessel size. The input-output analysis on the food web of energy pathways allowed identifying effects of biological and fishery components. Results showed that the structure of the Strait of Sicily food web is complex. Similarly to other Mediterranean areas, the food web of the Strait of Sicily encompasses 4.5 trophic levels (TLs) with the highest TLs reached by bluefin tuna, swordfish and large hake and largely impacted by bottom trawling and large longline. Importantly, benthic-pelagic coupling is affected by direct and indirect impacts among groups of species, fleets and fleets-species through the whole trophic spectrum of the food web. Moreover, functional groups able to move on large spatial scales or life history of which is spent between shelf and slope domains play a key role in linking subsystems together and mediate interactions in the Mediterranean mixed fisheries.

]]>
<![CDATA[Basic knowledge of social hierarchies and physiological profile of reared sea bass Dicentrarchus labrax (L.)]]> https://www.researchpad.co/article/5c3fa5d2d5eed0c484ca8fd2

The effects of social hierarchies (dominant/subordinate individuals), such as aggressiveness, feeding order, and territoriality, are some of the characteristics used for describing fish behaviour. Social hierarchy patterns are still poorly understood in European-reared sea bass (Dicentrarchus labrax). In this work, we examine the social interactions among captive fish integrating behavioural and physiological profiles. Groups of three fish with EMG (electromyogram) radio transmitters were monitored for two weeks via video recording. Plasma levels of cortisol, glucose, lactate and lysozyme as well as haematological parameters such as haemoglobin, haematocrit and RBCC (red blood cell count) were measured at the beginning and end of the experiments. Behaviour and muscle activity were monitored daily. The results highlighted that the social hierarchic order was established after one to two days, and it was maintained throughout the experimental period. Dominant and subordinate fish (ß and γ) showed significant differences in muscle activity, hormonal profile (cortisol), aspecific immunity (lysozyme), carbohydrate metabolism (lactate) and behavioural patterns (food order and aggressiveness). This holistic approach helps to provide insights into the physiological status of the subordinate (ß and γ) and dominant individuals. These data have wide implications for aquaculture practice.

]]>
<![CDATA[Evaluating the bio-economic performance of a Callo de hacha (Atrina maura, Atrina tuberculosa & Pinna rugosa) fishery restoration plan in La Paz, Mexico]]> https://www.researchpad.co/article/5c2544ffd5eed0c48442bcac

Small-scale fisheries are large contributors to regional economies and livelihoods in coastal communities of Latin America. While Mexico is one of the cases where small-scale fisheries play an important role, overfishing and poor management strategies have led to the collapse of many of its fisheries. The callo de hacha scallop fishery of the Ensenada de La Paz in Baja California Sur is an example of such a fishery which, after years of mismanagement, was closed by the Mexican authorities in 2009. The present study evaluated the recovery efforts in the cove and the potential outcomes of a collaboration between a non-governmental organization and a fishing community working towards the restoration of this pen-shell fishery. After more than four years of closure and active monitoring of the recovering process, the callo de hacha population has shown a significant population recovery, with potential solvency for reopening fishing activities. Four scenarios of uncertainty are evaluated with two of them providing positive net present values from reopening the fishery. We also document the involvement of a non-governmental organization with a fishing community, which created social capital and, in our opinion, was essential for a successful restoration. Having an actively involved community helped raise funds for the fishing closure so fishers were able to comply with Mexican legislation; it also fostered community building and self-organization that will be crucial to maintaining the sustainability of the fishery.

]]>
<![CDATA[Coral-dwelling fish moderate bleaching susceptibility of coral hosts]]> https://www.researchpad.co/article/5c1d5bd2d5eed0c4846ecafb

Global environmental change has the potential to disrupt well established species interactions, with impacts on nutrient cycling and ecosystem function. On coral reefs, fish living within the branches of coral colonies can promote coral performance, and it has been hypothesized that the enhanced water flow and nutrients provided by fish to corals could ameliorate coral bleaching. The aim of this study was to evaluate the influence of small, aggregating damselfish on the health of their host corals (physiology, recovery, and survival) before, during, and after a thermal-bleaching event. When comparing coral colonies with and without fish, those with resident fish exhibited higher Symbiodinium densities and chlorophyll in both field and experimentally-induced bleaching conditions, and higher protein concentrations in field colonies. Additionally, colonies with damselfish in aquaria exhibited both higher photosynthetic efficiency (FV/FM) during bleaching stress and post-bleaching recovery, compared to uninhabited colonies. These results demonstrate that symbiotic damselfishes, and the services they provide, translate into measureable impacts on coral tissue, and can influence coral bleaching susceptibility/resilience and recovery. By mediating how external abiotic stressors influence coral colony health, damselfish can affect the functional responses of these interspecific interactions in a warming ocean.

]]>
<![CDATA[Largescale mullet (Planiliza macrolepis) can recover from thermal pollution-induced malformations]]> https://www.researchpad.co/article/5c0993d3d5eed0c4842ada20

It is well known in aquaculture that hyperthermic perturbations may cause skeleton malformations in fish, but this phenomenon has rarely been documented in wild species. One rare location where thermal pollution has increased the proportion of malformed fish in wild population is in the waters near the Kuosheng Nuclear Power Plant in Taiwan. At this site, the threshold temperature and critical exposure time for inducing deformations have not been previously determined. In addition, it was unclear whether juvenile fish with thermal-induced malformations are able to recover when the temperature returns below the threshold. In the present study, juvenile largescale mullet (Planiliza macrolepis) were kept at temperatures ranging from 26°C and 36°C for 1–4 weeks, after which malformed fish were maintained at a preferred temperature of 26°C for another 8 weeks. The vertebrae bending index (VBI) of fish was increased after 2 weeks at 36°C, and deformed vertebral columns were detected by radiography after 4 weeks. However, malformations were not observed in groups kept at or below 34°C. Moreover, at the end of the recovery period, both the VBI and the vertebrae malformations had returned to normal. The results of this study may help to more precisely determine potential environmental impacts of thermal pollution and raise the possibility that the capacity for fish vertebrae to recover from the impacts of chronic thermal exposures may be an important consideration in marine fish conservation.

]]>
<![CDATA[Are fishery management upgrades worth the cost?]]> https://www.researchpad.co/article/5c0e989dd5eed0c484eaae5b

Many analyses of fishery recovery have demonstrated the potential biological and economic benefits of management reform, but few have compared these to the associated costs of management upgrades, which can be substantial. This study aims to determine if the projected economic benefits of management reform outweigh the increases in management costs required to achieve those benefits. To answer this question, we developed a database of country-level fisheries management costs and use those to estimate the country-level costs of management changes. We use this framework to compare estimates of future costs of management upgrades against their economic benefits in terms of profit. Results indicate that for most nations, including the top 25 fishing nations, management upgrades outweigh their associated costs. This result is robust to a number of alternative assumptions about costs. Results also suggest that stronger reforms such as rights-based management, although sometimes more expensive to implement, can lead to greater net economic benefits compared to alternatives.

]]>
<![CDATA[Study of the ichthyotoxic microalga Heterosigma akashiwo by transcriptional activation of sublethal marker Hsp70b in Transwell co-culture assays]]> https://www.researchpad.co/article/5b6da1a5463d7e4dccc5fae5

Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma). Neither typical toxicity tests carried out with cell extracts nor direct exposure to harmful species were proved suitable to unravel the mechanism of harm. Ichthyotoxic species show a complex harmful effect on fish, which is mediated through various mechanisms depending on the species. In this work, we present a method to study sub-lethal effects triggered by reactive oxygen species of a population of harmful algae in vivo over a fish cell line. To that end, Transwell co-cultures in which causative and target species are separated by a 0.4 μm pore membrane were carried out. This allowed the evaluation of the effect of the released molecules by cells in a rapid and compact test. In our method, the harmful effect was sensed through the transcriptional activation of sub-lethal marker Hsp70b in the CHSE214 salmon cell line. The method was tested with the raphidophyte Heterosigma akashiwo and Dunaliella tertiolecta (as negative control). It was shown that superoxide intracellular content and its release are not linked in these species. The methodology allowed proving that reactive oxygen species produced by H. akashiwo are able to induce the transcriptional activation of sub-lethal marker Hsp70b. However, neither loss of viability nor apoptosis was observed in CHSE214 salmon cell line except when exposed to direct contact with the raphidophyte cells (or their extract). Consequently, ROS was not concluded to be the main cause of ichthyotoxicity in H. akashiwo.

]]>
<![CDATA[Allelic Variant in the Anti-Müllerian Hormone Gene Leads to Autosomal and Temperature-Dependent Sex Reversal in a Selected Nile Tilapia Line]]> https://www.researchpad.co/article/5989da96ab0ee8fa60ba1d57

Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus). Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh), located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017) was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET) based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025). An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males). In summary, marker-assisted selection for amh variant ss831884014 seems to be highly beneficial to increase the male proportion in Nile tilapia, especially when applying temperature-induced sex reversal.

]]>
<![CDATA[Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus]]> https://www.researchpad.co/article/5989d9d1ab0ee8fa60b644dd

Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed.

]]>
<![CDATA[Redescription and Phylogenetic Analysis of the Mandible of an Enigmatic Pennsylvanian (Late Carboniferous) Tetrapod from Nova Scotia, and the Lability of Meckelian Jaw Ossification]]> https://www.researchpad.co/article/5989da30ab0ee8fa60b844ac

The lower jaw of an unidentified Pennsylvanian (Late Carboniferous) tetrapod from Nova Scotia – the “Parrsboro jaw”- is redescribed in the light of recent tetrapod discoveries and work on evolution of tetrapod mandibular morphology and placed for the first time in a numerical cladistics analysis. All phylogenetic analyses place the jaw in a crownward polytomy of baphetids, temnospondyls, and embolomeres. Several features resemble baphetids and temnospondyls including dermal ornamentation, absence of coronoid teeth, and presence of coronoid shagreen. Dentary dentition is most similar to Baphetes. An adsymphysial toothplate may not preclude temnospondyl affinity. An apparent large exomeckelian fenestra, with the dorsal foraminal margins formed by an unossified element, echoes the morphology of the stem tetrapod Sigournea and is unusually primitive given the other features of the jaw. The jaw may thus provide an example of an intermediate stage in Meckelian element evolution.

]]>
<![CDATA[A dual pathways transfer model to account for changes in the radioactive caesium level in demersal and pelagic fish after the Fukushima Daï-ichi nuclear power plant accident]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbcc0

The Fukushima Daï-ichi nuclear power plant (FDNPP) accident resulted in radioactive Cs being discharged into the local marine environment. While Cs bioaccumulates in biota and slowly depurates, the Cs concentrated in biota constitutes a source of Cs for animals feeding on each other. The marine biota therefore serves as a pool that recycles Cs, and this recycling process delays depuration in the fish feeding on this biota pool. Because the continental shelf is squeezed between the coast and very deep sea, the demersal marine species are confined to a narrow strip along the coast, close to the source of the radioactive input. Unlike demersal species, however, pelagic species are not restricted to the most contaminated area but instead spend some, if not most, of their time and feeding off-shore, far from the input source. We suggest that the feeding pathway for fish is a box whose size depends on their mobility, and that this feeding box is much larger and less contaminated (because of dilution through distance) for pelagic fish than for demersal fish. The aim of this paper is to test this hypothesis and to propose a simple operational model implementing two transfer routes: from seawater and from feeding. The model is then used to match the observational data in the aftermath of the FDNPP accident.

]]>
<![CDATA[Contrasting Patterns of Larval Mortality in Two Sympatric Riverine Fish Species: A Test of the Critical Period Hypothesis]]> https://www.researchpad.co/article/5989daa2ab0ee8fa60ba6191

Understanding the causal mechanisms that determine recruitment success is critical to the effective conservation of wild fish populations. Although recruitment strength is likely determined during early life when mortality is greatest, few studies have documented age-specific mortality rates for fish during this period. We investigated age-specific mortality of individual cohorts of two species of riverine fish from yolksac larvae to juveniles, assaying for the presence of a “critical period”: A time when mortality is unusually high. Early life stages of carp gudgeons (Hypseleotris spp.) and unspecked hardyhead (Craterocephalus stercusmuscarum fulvus)—two fishes that differ in fecundity, egg size and overlap between endogenous and exogenous feeding—were collected every second day for four months. We fitted survivorship curves to 22 carp gudgeon and 15 unspecked hardyhead four-day cohorts and tested several mortality functions. Mortality rates declined with age for carp gudgeon, with mean instantaneous mortality rates (-Z) ranging from 1.40–0.03. In contrast, mortality rates for unspecked hardyhead were constant across the larval period, with a mean -Z of 0.15. There was strong evidence of a critical period for carp gudgeon larvae from hatch until 6 days old, and no evidence of a critical period for unspecked hardyhead. Total larval mortality for carp gudgeon and unspecked hardyhead up to 24 days of age was estimated to be 97.8 and 94.3%, respectively. We hypothesise that life history strategy may play an important role in shaping overall mortality and the pattern of mortality during early life in these two fishes.

]]>
<![CDATA[An Exceptionally Preserved Transitional Lungfish from the Lower Permian of Nebraska, USA, and the Origin of Modern Lungfishes]]> https://www.researchpad.co/article/5989da3aab0ee8fa60b87922

Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian ‘phaneropleurids’ and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in ‘Rhinodipterus’ kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively.

]]>
<![CDATA[Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks]]> https://www.researchpad.co/article/5989db4aab0ee8fa60bda07e

The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484–491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.

]]>