ResearchPad - flooding Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Selected wetland soil properties correlate to Rift Valley fever livestock mortalities reported in 2009-10 in central South Africa]]> Outbreaks of Rift Valley fever have devastating impacts on ruminants, humans, as well as on regional and national economies. Although numerous studies on the impact and outbreak of Rift Valley fever exist, relatively little is known about the role of environmental factors, especially soil, on the aestivation of the virus. This study thus selected 22 sites for study in central South Africa, known to be the recurrent epicenter of widespread Rift Valley fever outbreaks in Southern Africa. Soils were described, sampled and analyzed in detail at each site. Of all the soil variables analyzed for, only eight (cation exchange capacity, exchangeable Ca2+, exchangeable K+, exchangeable Mg2+, soluble Ca2+, medium sand, As, and Br) were statistically identified to be potential indicators of sites with reported Rift Valley fever mortalities, as reported for the 2009–2010 Rift Valley fever outbreak. Four soil characteristics (exchangeable K+, exchangeable Mg2+, medium sand, and Br) were subsequently included in a discriminant function that could potentially be used to predict sites that had reported Rift Valley fever-associated mortalities in livestock. This study therefore constitutes an initial attempt to predict sites prone to Rift Valley fever livestock mortality from soil properties and thus serves as a basis for broader research on the interaction between soil, mosquitoes and Rift Valley fever virus. Future research should include other environmental components such as vegetation, climate, and water properties as well as correlating soil properties with floodwater Aedes spp. abundance and Rift Valley fever virus prevalence.

<![CDATA[Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs]]> The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.

<![CDATA[Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant]]>


Sea-level rise is a consequence of climate change that can impact the ecological and physiological changes of coastal, ground-dwelling species. Sea-level rise has a potential to inundate birds, rodents, spiders, and insects that live on the ground in coastal areas. Yet, there is still much to be learned concerning the specifics of these impacts. The red imported fire ant Solenopsis invicta (Buren) excavates soil for its home and is capable of surviving flooding. Because of their ground-dwelling life history and rapid reproduction, fire ants make an ideal model for discovery and prediction of changes that may be due to sea-level rise. There are up to 500,000 individuals in a colony, and these invasive ants naturally have a painful sting. However, observations suggest that colonies of fire ants that dwell in tidally-influenced areas are more aggressive with more frequent stings and more venom injected per sting (behavioral and physiological changes) than those located inland. This may be an adaption to sea-level rise. Therefore, the objective of this study is to elucidate differences in inland and coastal defensiveness via micro-dissection and comparison of head width, head length, stinger length, and venom sac volume. But first because fire ants’ ability to raft on brackish tidal water is unknown, it had to be determined if fire ants could indeed raft in brackish water and examine the behavior differences between those flooded with freshwater vs. saltwater.


To test the coastal-aggression hypothesis, inland colonies and coastal colonies, which experience relatively greater amounts of flooding, specifically regular tidal and windblown water and oscillations (i.e. El Nińo Southern Oscillation) from the Gulf of Mexico, were collected. To mimic sea-level rise, the colonies were flooded in salinities that correspond to both their collection site and conditions found in a variety of locales and situations (such as storm surge from a tropical storm). Individual ants were immediately taken from each colony for dissection before flooding, 1-hour into flooding, and 24-hours into flooding.

Results and discussion

Fire ants use their venom to defend themselves and to communicate alarm or aggression. Dissections and measurement of heads, venom sacs, and stingers revealed both coastal and inland colonies experience an increase in venom sac volume after 24 hours; in fact coastal colonies increased their venom volume by 75% after 24 h of flooding Whether this venom sac enlargement is due to diffusion of water or venom sac production is unknown. These ground-dwelling ants exhibit physiological and behavioral adaptations to ongoing sea-level rise possibly indicating that they are responding to increased flooding. Fire ants will raft on high-salinity water; and sea-level rise may cause stings by flooded ants to be more severe because of increased venom volume.

<![CDATA[Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes]]>

The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.

<![CDATA[Trait divergence and habitat specialization in tropical floodplain forests trees]]>

Habitat heterogeneity of tropical forests is thought to lead to specialization in plants and contribute to the high diversity of tree species in Amazonia. One prediction of habitat specialization is that species specialized for resource-rich habitats will have traits associated with high resource acquisition and fast growth while species specialized for resource-poor habitats will have traits associated with high resource conservation and persistence but slow growth. We tested this idea for seven genera and for twelve families from nutrient-rich white-water floodplain forest (várzea) and nutrient-poor black-water (igapó) floodplain forest. We measured 11 traits that are important for the carbon and nutrient balance of the trees, and compared trait variation between habitat types (white- and black-water forests), and the effect of habitat and genus/family on trait divergence. Functional traits of congeneric species differed between habitat types, where white-water forest species invested in resource acquisition and productive tissues, whereas black-water forest species invested in resource conservation and persistent tissues. Habitat specialization is leading to the differentiation of floodplain tree species of white-water and black-water forests, thus contributing to a high diversity of plant species in floodplain forests.

<![CDATA[Social media usage patterns during natural hazards]]>

Natural hazards are becoming increasingly expensive as climate change and development are exposing communities to greater risks. Preparation and recovery are critical for climate change resilience, and social media are being used more and more to communicate before, during, and after disasters. While there is a growing body of research aimed at understanding how people use social media surrounding disaster events, most existing work has focused on a single disaster case study. In the present study, we analyze five of the costliest disasters in the last decade in the United States (Hurricanes Irene and Sandy, two sets of tornado outbreaks, and flooding in Louisiana) through the lens of Twitter. In particular, we explore the frequency of both generic and specific food-security related terms, and quantify the relationship between network size and Twitter activity during disasters. We find differences in tweet volume for keywords depending on disaster type, with people using Twitter more frequently in preparation for Hurricanes, and for real-time or recovery information for tornado and flooding events. Further, we find that people share a host of general disaster and specific preparation and recovery terms during these events. Finally, we find that among all account types, individuals with “average” sized networks are most likely to share information during these disasters, and in most cases, do so more frequently than normal. This suggests that around disasters, an ideal form of social contagion is being engaged in which average people rather than outsized influentials are key to communication. These results provide important context for the type of disaster information and target audiences that may be most useful for disaster communication during varying extreme events.

<![CDATA[Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity]]>

Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.

<![CDATA[Are values related to culture, identity, community cohesion and sense of place the values most vulnerable to climate change?]]>

Values related to culture, identity, community cohesion and sense of place have sometimes been downplayed in the climate change discourse. However, they have been suggested to be not only important to citizens but the values most vulnerable to climate change. Here we test four empirical consequences of the suggestion: (i) at least 50% of the locations citizens' consider to be the most important locations in their municipality are chosen because they represent these values, (ii) locations representing these values have a high probability of being damaged by climate change induced sea level rise, (iii) citizens for which these values are particularly strongly held less strongly believe in the local effects of climate change, and (iv) citizens for which these values are particularly strongly held less strongly believe that they have experienced the effects of climate change. The tests were made using survey data collected in 2014 from 326 citizens owning property in Höganäs municipality, Sweden, and included values elicited using a new methodology separating instrumental values from end values, and using the former (which strictly speaking should be seen as estimates of usefulness rather than as aims in themselves) as stepping stones to pinpoint the latter, that represent the true interests of the respondents. The results provide the first evidence that, albeit frequent, values related to culture, identity, community cohesion and sense of place are not the values most vulnerable to climate change. This in turn indicates a need to further investigate the vulnerability of these values to climate change, using a methodology that clearly distinguishes between instrumental and end values.

<![CDATA[Rift Valley fever: An open-source transmission dynamics simulation model]]>

Rift Valley fever (RVF) is one of the major viral zoonoses in Africa, affecting humans and several domestic animal species. The epidemics in eastern Africa occur in a 5-15 year cycle coinciding with abnormally high rainfall generally associated to the warm phase of the El Niño event. However, recently, evidence has been gathered of inter-epidemic transmission. An open-source, easily applicable, accessible and modifiable model was built to simulate the transmission dynamics of RVF. The model was calibrated using data collected in the Kilombero Valley in Tanzania with people and cattle as host species and Ædes mcintoshi, Æ. ægypti and two Culex species as vectors. Simulations were run over a period of 27 years using standard parameter values derived from two previous studies in this region. Our model predicts low-level transmission of RVF, which is in line with epidemiological studies in this area. Emphasis in our simulation was put on both the dynamics and composition of vector populations in three ecological zones, in order to elucidate the respective roles played by different vector species: the model output did indicate the necessity of Culex involvement and also indicated that vertical transmission in Ædes mcintoshi may be underestimated. This model, being built with open-source software and with an easy-to-use interface, can be adapted by researchers and control program managers to their specific needs by plugging in new parameters relevant to their situation and locality.

<![CDATA[The influence of maternal agency on severe child undernutrition in conflict-ridden Nigeria: Modeling heterogeneous treatment effects with machine learning]]>

Nigeria is one of the fastest growing African economies, yet struggles with armed conflict, poverty, and morbidity. An area of high concern is how this situation affects vulnerable families and their children. A key pathway in improving the situation for children in times of conflict is to reinforce maternal agency, for instance, through education. However, the state of the art of research lacks a clear understanding of how many years of education is needed before children benefit. Due to mother’s differing social context and ability, the effect of maternal education varies. We study the heterogeneous treatment effects of maternal agency, here operationalized as length of education, on severe child undernutrition in the context of armed conflict. We deploy a repeated cross-sectional study design, using the Nigeria 2008 and 2013 Demographic and Health Survey (DHS). The sample covers 25,917 children and their respective mothers. A key methodological challenge is to estimate this heterogeneity inductively. The causal inference literature proposes a machine learning approach, Bayesian Additive Regression Trees (BART), as a promising avenue to overcome this challenge. Based on BART-estimation of the Conditional Average Treatment Effect (CATE) this study confirms earlier findings in that maternal education decreases severe child undernutrition, but only when mothers acquire an education that lasts more than the country’s compulsory 9 years; that is 10 years of education and higher. This protective effect remains even during the exposure of armed conflict.

<![CDATA[Aquatic macroinvertebrates stabilize gravel bed sediment: A test using silk net-spinning caddisflies in semi-natural river channels]]>

Organisms can have large effects on the physical properties of the habitats where they live. For example, measurements in laboratory stream microcosms have shown that the presence of silk net-spinning insect larvae (Trichoptera: Hydropsychidae) can increase the shear force required to initiate movement of riverbed sediments. Few studies, however, have moved beyond laboratory settings to quantify the engineering impacts of aquatic insects under more complex field conditions. To bridge the gap between small-scale laboratory experiments and natural stream ecosystems, we conducted experiments in large (50 m2) outdoor river channels where net-spinning aquatic insects were manipulated in sediment patches that were 5 to 25 times larger than in previous studies. We tested whether larvae of two caddisfly species (Arctopsyche californica and Ceratopsyche oslari) influenced the stability of gravel during simulated floods when alone in monoculture and together in polyculture. On average, populations of caddisflies increased the critical shear stress required to initiate sediment movement by 20% compared to treatments without caddisflies. Per capita effects of caddisflies on sediment stability were similar between previous laboratory studies and this field experiment, and Arctopsyche had a larger per capita effect than Ceratopsyche, perhaps because of its larger size and stronger silk. Contrary to prior laboratory flume results, the effects of the two species on critical shear stress when together were similar to the additive expectation of both species when alone, but effects of the two species together were higher than the additive expectation when we accounted for density. Comparisons of total population and per capita effects suggest that caddisfly density, identity, and coexisting species likely have effects on the magnitude of caddisfly impacts on critical shear stress. Our findings imply that consideration of both the abundances and traits of ecosystem engineers is needed to describe and model their effects on sediment mobility.

<![CDATA[Role of freshwater floodplain-tidal slough complex in the persistence of the endangered delta smelt]]>

Seasonal floodplain wetland is one of the most variable and diverse habitats found in coastal ecosystems, yet it is also one of the most highly altered by humans. The Yolo Bypass, the primary floodplain of the Sacramento River in California’s Central Valley, USA, has been shown to provide various benefits to native fishes when inundated. However, the Yolo Bypass exists as a tidal dead-end slough during dry periods and its value to native fishes has been less studied in this state. During the recent drought (2012–2016), we found higher abundance of the endangered Delta Smelt (Hypomesus transpacificus), than the previous 14 years of fish monitoring within the Yolo Bypass. Meanwhile, Delta Smelt abundance elsewhere in the estuary was at record lows during this time. To determine the value of the Yolo Bypass as a nursery habitat for Delta Smelt, we compared growth, hatch dates, and diets of juvenile Delta Smelt collected within the Yolo Bypass with fish collected among other putative nursery habitats in the San Francisco Estuary between 2010 and 2016. Our results indicated that when compared to other areas of the estuary, fish in the Yolo Bypass spawned earlier, and offspring experienced both higher quality feeding conditions and growth rates. The occurrence of healthy juvenile Delta Smelt in the Yolo Bypass suggested that the region may have acted as a refuge for the species during the drought years of 2012–2016. However, our results also demonstrated that no single region provided the best rearing habitat for juvenile Delta Smelt. It will likely require a mosaic of habitats that incorporates floodplain-tidal sloughs in order to promote the resilience of this declining estuarine fish species.

<![CDATA[Augmenting geovisual analytics of social media data with heterogeneous information network mining—Cognitive plausibility assessment]]>

This paper investigates the feasibility, from a user perspective, of integrating a heterogeneous information network mining (HINM) technique into SensePlace3 (SP3), a web-based geovisual analytics environment. The core contribution of this paper is a user study that determines whether an analyst with minimal background can comprehend the network data modeling metaphors employed by the resulting system, whether they can employ said metaphors to explore spatial data, and whether they can interpret the results of such spatial analysis correctly. This study confirms that all of the above is, indeed, possible, and provides empirical evidence about the importance of a hands-on tutorial and a graphical approach to explaining data modeling metaphors in the successful adoption of advanced data mining techniques. Analysis of outcomes of data exploration by the study participants also demonstrates the kinds of insights that a visual interface to HINM can enable. A second contribution is a realistic case study that demonstrates that our HINM approach (made accessible through a visual interface that provides immediate visual feedback for user queries), produces a clear and a positive difference in the outcome of spatial analysis. Although this study does not aim to validate HINM as a data modeling approach (there is considerable evidence for this in existing literature), the results of the case study suggest that HINM holds promise in the (geo)visual analytics domain as well, particularly when integrated into geovisual analytics applications. A third contribution is a user study protocol that is based on and improves upon the current methodological state of the art. This protocol includes a hands-on tutorial and a set of realistic data analysis tasks. Detailed evaluation protocols are rare in geovisual analytics (and in visual analytics more broadly), with most studies reviewed in this paper failing to provide sufficient details for study replication or comparison work.

<![CDATA[Epidemiology and risk factors for typhoid fever in Central Division, Fiji, 2014–2017: A case-control study]]>


Typhoid fever is endemic in Fiji, with high reported annual incidence. We sought to identify the sources and modes of transmission of typhoid fever in Fiji with the aim to inform disease control.

Methodology/Principal findings

We identified and surveyed patients with blood culture-confirmed typhoid fever from January 2014 through January 2017. For each typhoid fever case we matched two controls by age interval, gender, ethnicity, and residential area. Univariable and multivariable analysis were used to evaluate associations between exposures and risk for typhoid fever. We enrolled 175 patients with typhoid fever and 349 controls. Of the cases, the median (range) age was 29 (2–67) years, 86 (49%) were male, and 84 (48%) lived in a rural area. On multivariable analysis, interrupted water availability (odds ratio [OR] = 2.17; 95% confidence interval [CI] 1.18–4.00), drinking surface water in the last 2 weeks (OR = 3.61; 95% CI 1.44–9.06), eating unwashed produce (OR = 2.69; 95% CI 1.48–4.91), and having an unimproved or damaged sanitation facility (OR = 4.30; 95% CI 1.14–16.21) were significantly associated with typhoid fever. Frequent handwashing after defecating (OR = 0.57; 95% CI 0.35–0.93) and using soap for handwashing (OR = 0.61; 95% CI 0.37–0.95) were independently associated with a lower odds of typhoid fever.


Poor sanitation facilities appear to be a major source of Salmonella Typhi in Fiji, with transmission by drinking contaminated surface water and consuming unwashed produce. Improved sanitation facilities and protection of surface water sources and produce from contamination by human feces are likely to contribute to typhoid control in Fiji.

<![CDATA[Development and validation of risk profiles of West African rural communities facing multiple natural hazards]]>

West Africa has been described as a hotspot of climate change. The reliance on rain-fed agriculture by over 65% of the population means that vulnerability to climatic hazards such as droughts, rainstorms and floods will continue. Yet, the vulnerability and risk levels faced by different rural social-ecological systems (SES) affected by multiple hazards are poorly understood. To fill this gap, this study quantifies risk and vulnerability of rural communities to drought and floods. Risk is assessed using an indicator-based approach. A stepwise methodology is followed that combines participatory approaches with statistical, remote sensing and Geographic Information System techniques to develop community level vulnerability indices in three watersheds (Dano, Burkina Faso; Dassari, Benin; Vea, Ghana). The results show varying levels of risk profiles across the three watersheds. Statistically significant high levels of mean risk in the Dano area of Burkina Faso are found whilst communities in the Dassari area of Benin show low mean risk. The high risk in the Dano area results from, among other factors, underlying high exposure to droughts and rainstorms, longer dry season duration, low caloric intake per capita, and poor local institutions. The study introduces the concept of community impact score (CIS) to validate the indicator-based risk and vulnerability modelling. The CIS measures the cumulative impact of the occurrence of multiple hazards over five years. 65.3% of the variance in observed impact of hazards/CIS was explained by the risk models and communities with high simulated disaster risk generally follow areas with high observed disaster impacts. Results from this study will help disaster managers to better understand disaster risk and develop appropriate, inclusive and well integrated mitigation and adaptation plans at the local level. It fulfills the increasing need to balance global/regional assessments with community level assessments where major decisions against risk are actually taken and implemented.

<![CDATA[Floodplain farm fields provide novel rearing habitat for Chinook salmon]]>

When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

<![CDATA[Effects of Long-Term Periodic Submergence on Photosynthesis and Growth of Taxodium distichum and Taxodium ascendens Saplings in the Hydro-Fluctuation Zone of the Three Gorges Reservoir of China]]>

Responses of bald cypress (Taxodium distichum) and pond cypress (Taxodium ascendens) saplings in photosynthesis and growth to long-term periodic submergence in situ in the hydro-fluctuation zone of the Three Gorges Dam Reservoir (TGDR) were studied. Water treatments of periodic deep submergence (DS) and moderate submergence (MS) in situ were imposed on 2-year-old bald cypress and pond cypress saplings. The effects of periodic submergence on photosynthesis and growth were investigated after 3 years (i.e. 3 cycles) compared to a control (i.e. shallow submergence, abbreviated as SS). Results showed that pond cypress had no significant change in net photosynthetic rate (Pn) in response to periodic moderate and deep submergence in contrast to a significant decrease in Pn of bald cypress under both submergence treatments, when compared to that of SS. Ratios of Chlorophyll a/b and Chlorophylls/Carotenoid of pond cypress were significantly increased in periodic moderate submergence and deep submergence, while bald cypress showed no significant change. Diameter at breast height (DBH) and tree height of both species were significantly reduced along with submergence depth. Relative diameter and height growth rates of the two species were also reduced under deeper submergence. Moreover, bald cypress displayed higher relative diameter growth rate than pond cypress under deep submergence mainly attributed to higher productivity of the larger crown area of bald cypress. When subjected to deep subergence, both species showed significant reduction in primary branch number, while in moderate submergence, bald cypress but not pond cypress showed significant reduction in primary branch number. These results indicate that both bald cypress and pond cypress are suitbale candidates for reforestation in the TGDR region thanks to their submergence tolerance characteristics, but bald cypress can grow better than pond cypress under deep submergence overall.

<![CDATA[Does flooding effect the apparent survival and body condition of a ground foraging migrant passerine?]]>

Natural disturbances play a fundamental role in maintaining habitat and landscape heterogeneity; however, these events can also have negative effects on some species. While we know that disturbances can reduce habitat quality for many species, leading to diminished populations and altered community structure, the effect of these events on individuals that continue to occupy affected areas remains unknown. We focused on understanding the impact of flood-mediated reduction of habitat quality on Swainson’s Warblers (Limnothlypis swainsonii). In 2008, a catastrophic flood event occurred on the Mississippi River and its tributaries, severely affecting one of two locations where we had studied territorial males since 2004. To determine the impact of flooding on this species, we evaluated how body condition and apparent survival of males differed between locations and in pre-flood (2004–2007) and post-flood (2008–2010) periods. Body condition did not differ between locations after the flood, suggesting that flooding did not cause food limitation for this obligate ground forager. Apparent survival in the post-flood period was lower at both locations and led to near population extirpation at the heavily flood-impacted site. Overall, this study demonstrates the vulnerability of species to extreme hydrological events, an increasing threat due to climate change. Future research should focus on identifying species that are vulnerable to these events and determining appropriate conservation strategies. Conservation for the Swainson’s Warbler should focus on identifying and conserving the highest elevation, least flood prone areas within bottomland hardwood forests and managing those areas for thick understory vegetation.

<![CDATA[Flood-Induced Changes in Soil Microbial Functions as Modified by Plant Diversity]]>

Flooding frequency is predicted to increase during the next decades, calling for a better understanding of impacts on terrestrial ecosystems and for developing strategies to mitigate potential damage. Plant diversity is expected to buffer flooding effects by providing a broad range of species’ responses. Here we report on the response of soil processes to a severe summer flood in 2013, which affected major parts of central Europe. We compared soil microbial respiration, biomass, nutrient limitation and enzyme activity in a grassland biodiversity experiment in Germany before flooding, one week and three months after the flood. Microbial biomass was reduced in the severely flooded plots at high, but not at low plant functional group richness. Flooding alleviated microbial nitrogen limitation, presumably due the input of nutrient-rich sediments. Further, the activity of soil enzymes including 1,4-β-N-acetylglucosaminidase, phenol oxidase and peroxidase increased with flooding severity, suggesting increased chitin and lignin degradation as a consequence of the input of detritus in sediments. Flooding effects were enhanced at higher plant diversity, indicating that plant diversity temporarily reduces stability of soil processes during flooding. The long-term impacts, however, remain unknown and deserve further investigation.

<![CDATA[Temporal and Spatial Variations of Drought in China: Reconstructed from Historical Memorials Archives during 1689-1911]]>

In China, Zou Zhe (Memorials to the Throne, or Palace Memorials), an official communication to the emperors of China by local officials, offers an opportunity to reconstruct the spatial-temporal distributions of droughts at a high-resolution. A 223-year, 1689–1911, time series of drought events was reconstructed in this study based on 2494 pieces of Zou Zhe. The results show that: 1) on the temporal scale, the drought affected areas, i.e., number of affected counties, showed three peak periods during the last 223 years and nine extreme drought years with more than 300 counties affected have been identified; 2) on the spatial scale, there existed three drought-prone areas in China, i.e., Gansu province and Ningxia Hui Autonomous Region in Northwest China, Shandong, Hebei, and Henan provinces and Tianjin in the North China, and Anhui and Jiangsu provinces in Jianghuai area, respectively; 3) the drought-prone areas have been expanding from North China to South China since the second half of 19th century; 4) on the seasonal scale, summer witnessed the largest number of drought events. Meanwhile, the uncertainties of the results were also discussed, i.e. what caused the spatial-temporal distribution of drought. The results of this study can be used to mitigate the adverse effects of extreme weather events on food increasing and stable production.