ResearchPad - foxes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Vaccination and monitoring strategies for epidemic prevention and detection in the Channel Island fox (<i>Urocyon littoralis</i>)]]> https://www.researchpad.co/article/elastic_article_15750 Disease transmission and epidemic prevention are top conservation concerns for wildlife managers, especially for small, isolated populations. Previous studies have shown that the course of an epidemic within a heterogeneous host population is strongly influenced by whether pathogens are introduced to regions of relatively high or low host densities. This raises the question of how disease monitoring and vaccination programs are influenced by spatial heterogeneity in host distributions. We addressed this question by modeling vaccination and monitoring strategies for the Channel Island fox (Urocyon littoralis), which has a history of substantial population decline due to introduced disease. We simulated various strategies to detect and prevent epidemics of rabies and canine distemper using a spatially explicit model, which was parameterized from field studies. Increasing sentinel monitoring frequency, and to a lesser degree, the number of monitored sentinels from 50 to 150 radio collared animals, reduced the time to epidemic detection and percentage of the fox population infected at the time of detection for both pathogens. Fox density at the location of pathogen introduction had little influence on the time to detection, but a large influence on how many foxes had become infected by the detection day, especially when sentinels were monitored relatively infrequently. The efficacy of different vaccination strategies was heavily influenced by local host density at the site of pathogen entry. Generally, creating a vaccine firewall far away from the site of pathogen entry was the least effective strategy. A firewall close to the site of pathogen entry was generally more effective than a random distribution of vaccinated animals when pathogens entered regions of high host density, but not when pathogens entered regions of low host density. These results highlight the importance of considering host densities at likely locations of pathogen invasion when designing disease management plans.

]]>
<![CDATA[Behavioral differences at scent stations between two exploited species of desert canids]]> https://www.researchpad.co/article/elastic_article_14757 Coyotes (Canis latrans) and kit foxes (Vulpes macrotis) are desert canids that share ecological similarities, but have disparate histories with anthropogenic pressure that may influence their responses towards novel stimuli. We used remote cameras to investigate response to novel stimuli for these two species. We predicted that coyotes (heavily pressured species) would be more wary towards novel stimuli on unprotected land (canid harvest activities are permitted) than in protected areas (canid harvest activities are not permitted), whereas kit foxes (less pressured species) would exhibit no difference. We examined differences in the investigative behaviors at 660 scent stations in both protected and unprotected areas. Coyotes showed no differences between protected and unprotected land and were generally more wary than kit foxes, supporting our prediction. Kit foxes were more investigative on protected land, contrary to our expectations. Our study provides evidence that anthropogenic pressure can alter the behaviors of wildlife species.

]]>
<![CDATA[Rabies in the Baltic States: Decoding a Process of Control and Elimination]]> https://www.researchpad.co/article/5989da3cab0ee8fa60b88365

Rabies is a fatal zoonosis that still causes nearly 70, 000 human deaths every year. In Europe, the oral rabies vaccination (ORV) of red foxes (Vulpes vulpes) was developed in the late 1970s and has demonstrated its effectiveness in the eradication of the disease in Western and some Central European countries. Following the accession of the three Baltic countries—Estonia, Latvia and Lithuania—to the European Union in 2004, subsequent financial support has allowed the implementation of regular ORV campaigns since 2005–2006. This paper reviews ten years of surveillance efforts and ORV campaigns in these countries resulting in the near eradication of the disease. The various factors that may have influenced the results of vaccination monitoring were assessed using generalized linear models (GLMs) on bait uptake and on herd immunity. As shown in previous studies, juveniles had lower bait uptake level than adults. For the first time, raccoon dogs (Nyctereutes procyonoides) were shown to have significantly lower bait uptake proportion compared with red foxes. This result suggests potentially altered ORV effectiveness in this invasive species compared to the red foxes. An extensive phylogenetic analysis demonstrated that the North-East European (NEE) rabies phylogroup is endemic in all three Baltic countries. Although successive oral vaccination campaigns have substantially reduced the number of detected rabies cases, sporadic detection of the C lineage (European part of Russian phylogroup) underlines the risk of reintroduction via westward spread from bordering countries. Vaccine induced cases were also reported for the first time in non-target species (Martes martes and Meles meles).

]]>
<![CDATA[Management and modeling approaches for controlling raccoon rabies: The road to elimination]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd0b5

Rabies is an ancient viral disease that significantly impacts human and animal health throughout the world. In the developing parts of the world, dog bites represent the highest risk of rabies infection to people, livestock, and other animals. However, in North America, where several rabies virus variants currently circulate in wildlife, human contact with the raccoon rabies variant leads to the highest per capita population administration of post-exposure prophylaxis (PEP) annually. Previous rabies variant elimination in raccoons (Canada), foxes (Europe), and dogs and coyotes (United States) demonstrates that elimination of the raccoon variant from the eastern US is feasible, given an understanding of rabies control costs and benefits and the availability of proper tools. Also critical is a cooperatively produced strategic plan that emphasizes collaborative rabies management among agencies and organizations at the landscape scale. Common management strategies, alone or as part of an integrated approach, include the following: oral rabies vaccination (ORV), trap-vaccinate-release (TVR), and local population reduction. As a complement, mathematical and statistical modeling approaches can guide intervention planning, such as through contact networks, circuit theory, individual-based modeling, and others, which can be used to better understand and predict rabies dynamics through simulated interactions among the host, virus, environment, and control strategy. Strategies derived from this ecological lens can then be optimized to produce a management plan that balances the ecological needs and program financial resources. This paper discusses the management and modeling strategies that are currently used, or have been used in the past, and provides a platform of options for consideration while developing raccoon rabies virus elimination strategies in the US.

]]>
<![CDATA[Niche Partitioning among Mesocarnivores in a Brazilian Wetland]]> https://www.researchpad.co/article/5989db2cab0ee8fa60bd17ea

We investigated the home range size, habitat selection, as well as the spatial and activity overlap, of four mid-sized carnivore species in the Central Pantanal, Mato Grosso do Sul, Brazil. From December 2005 to September 2008, seven crab-eating foxes Cerdocyon thous, seven brown-nosed coatis Nasua nasua, and six ocelots Leopardus pardalis were radio-collared and monitored. Camera trap data on these species were also collected for the crab-eating raccoon Procyon cancrivorus. We hypothesized that there would be large niche differentiation in preferred habitat-type or active period between generalist species with similar diet, and higher similarity in habitat-type or activity time between the generalist species (crab-eating foxes and coatis) and the more specialized ocelot. Individual home ranges were estimated using the utilization distribution index (UD– 95% fixed Kernel). With data obtained from radio-collared individuals, we evaluated habitat selection using compositional analysis. Median home range size of ocelots was 8 km2. The proportion of habitats within the home ranges of ocelots did not differ from the overall habitat proportion in the study area, but ocelots preferentially used forest within their home range. The median home range size of crab-eating foxes was 1.4 km2. Foxes showed second-order habitat selection and selected savanna over shrub-savanna vegetation. The median home range size for coati was 1.5 km2. Coati home ranges were located randomly in the study area. However, within their home range, coatis occurred more frequently in savanna than in other vegetation types. Among the four species, the overlap in activity period was the highest (87%) between ocelots and raccoons, with the least overlap occurring between the ocelot and coati (25%). We suggest that temporal segregation of carnivores was more important than spatial segregation, notably between the generalist coati, crab-eating fox and crab-eating raccoon.

]]>
<![CDATA[The range of the mange: Spatiotemporal patterns of sarcoptic mange in red foxes (Vulpes vulpes) as revealed by camera trapping]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdca15

Sarcoptic mange is a widely distributed disease that affects numerous mammalian species. We used camera traps to investigate the apparent prevalence and spatiotemporal dynamics of sarcoptic mange in a red fox population in southeastern Norway. We monitored red foxes for five years using 305 camera traps distributed across an 18000 km2 area. A total of 6581 fox events were examined to visually identify mange compatible lesions. We investigated factors associated with the occurrence of mange by using logistic models within a Bayesian framework, whereas the spatiotemporal dynamics of the disease were analysed with space-time scan statistics. The apparent prevalence of the disease fluctuated over the study period with a mean of 3.15% and credible interval [1.25, 6.37], and our best logistic model explaining the presence of red foxes with mange-compatible lesions included time since the beginning of the study and the interaction between distance to settlement and season as explanatory variables. The scan analyses detected several potential clusters of the disease that varied in persistence and size, and the locations in the cluster with the highest probability were closer to human settlements than the other survey locations. Our results indicate that red foxes in an advanced stage of the disease are most likely found closer to human settlements during periods of low wild prey availability (winter). We discuss different potential causes. Furthermore, the disease appears to follow a pattern of small localized outbreaks rather than sporadic isolated events.

]]>
<![CDATA[The Eurasian otter (Lutra lutra) as a potential host for rickettsial pathogens in southern Italy]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcb5e

Canine monocytic ehrlichiosis and rickettsiosis are zoonotic tick-borne diseases of canids caused by the intracellular obligate bacteria Ehrlichia canis and Rickettsia species respectively. In this study, we investigated using standard and real-time PCR and sequencing, the occurrence and molecular characterization of E. canis and Rickettsia species in the Eurasian otter (Lutra lutra) from the southern Italian population. Samples were screened by using molecular assays also for Neospora caninum, Toxoplasma gondii, Clamydophyla spp., Coxiella burnetii, Leishmania spp., Cryptosporidium spp., and Giardia spp. detection, and helminths were studied by traditional methods. Out of six carcasses tested, three were positive for E. canis and co-infection with Rickettsia sp. occurred in one of those. Sequences of the 16S rRNA E. canis gene were identical to each other but differed from most of those previously found in red foxes (Vulpes vulpes) and wolves (Canis lupus) from southern Italy. Helminths included just cystacanths of Sphaerirostris spp. from the intestine of two Eurasian otters and the nematode Angiostrongylus vasorum from the lungs of a single Eurasian otter. None of the samples was positive for the other investigated selected pathogens. This study is the first report on the evidence of infection by rickettsial pathogens in the Eurasian otter. The present result prompts some inquiries into the pathogenic role of those bacteria for the isolated sub-populations of the endangered Eurasian otter in southern Italy.

]]>
<![CDATA[Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey]]> https://www.researchpad.co/article/5989da11ab0ee8fa60b79d01

The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight), and cathemeral (active throughout the day). These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels), nocturnal (raccoon dogs and raccoons), crepuscular (sika deer and mountain hares), and cathemeral (Japanese martens, red foxes, and brown bears). Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring–autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter–summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.

]]>
<![CDATA[Mesopredator Management: Effects of Red Fox Control on the Abundance, Diet and Use of Space by Feral Cats]]> https://www.researchpad.co/article/5989db25ab0ee8fa60bd02df

Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators—mesopredators—often remain after apex predator removal. Despite concern that these mesopredators may be 'released' in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent.

]]>
<![CDATA[Species-Specific Responses of Carnivores to Human-Induced Landscape Changes in Central Argentina]]> https://www.researchpad.co/article/5989da39ab0ee8fa60b87696

The role that mammalian carnivores play in ecosystems can be deeply altered by human-driven habitat disturbance. While most carnivore species are negatively affected, the impact of habitat changes is expected to depend on their ecological flexibility. We aimed to identify key factors affecting the habitat use by four sympatric carnivore species in landscapes of central Argentina. Camera trapping surveys were carried out at 49 sites from 2011 to 2013. Each site was characterized by 12 habitat attributes, including human disturbance and fragmentation. Four landscape gradients were created from Principal Component Analysis and their influence on species-specific habitat use was studied using Generalized Linear Models. We recorded 74 events of Conepatus chinga, 546 of Pseudalopex gymnocercus, 193 of Leopardus geoffroyi and 45 of Puma concolor. We found that the gradient describing sites away from urban settlements and with low levels of disturbance had the strongest influence. L. geoffroyi was the only species responding significantly to the four gradients and showing a positive response to modified habitats, which could be favored by the low level of persecution by humans. P. concolor made stronger use of most preserved sites with low proportion of cropland, even though the species also used sites with an intermediate level of fragmentation. A more flexible use of space was found for C. chinga and P. gymnocercus. Our results demonstrate that the impact of human activities spans across this guild of carnivores and that species-specific responses appear to be mediated by ecological and behavioral attributes.

]]>
<![CDATA[Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc28a

Home range size is a fundamental concept for understanding animal dispersion and ecological needs, and it is one of the most commonly reported ecological attributes of free-ranging mammals. Previous studies indicate that red foxes Vulpes vulpes display great variability in home range size. Yet, there has been little consensus regarding the reasons why home range sizes of red foxes vary so extensively. In this study, we examine possible causes of variation in red fox home range sizes using data from 52 GPS collared red foxes from four study areas representing a gradient of landscape productivity and human landscape alteration in Norway and Sweden. Using 90% Local Convex Hull home range estimates, we examined how red fox home range size varied in relation to latitude, elevation, vegetation zone, proportion of agricultural land and human settlement within a home range, and sex and age. We found considerable variation in red fox home range sizes, ranging between 0.95 km2 to 44 km2 (LoCoH 90%) and 2.4 km2 to 358 km2 (MCP 100%). Elevation, proportion of agricultural land and sex accounted for 50% of the variation in home range size found amongst foxes, with elevation having the strongest effect. Red foxes residing in more productive landscapes (those in more southern vegetation zones), had home ranges approximately four times smaller than the home ranges of foxes in the northern boreal vegetation zone. Our results indicate that home range size was influenced by a productivity gradient at both the landscape (latitude) and the local (elevation) scale. The influence of the proportion of agriculture land on home range size of foxes illustrates how human landscape alteration can affect the space use and distribution of red foxes. Further, the variation in home range size found in this study demonstrates the plasticity of red foxes to respond to changing human landscape alteration as well as changes in landscape productivity, which may be contributing to red fox population increases and northern range expansions.

]]>
<![CDATA[Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland]]> https://www.researchpad.co/article/5989daf3ab0ee8fa60bc2014

There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1–4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I – 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in Greenland arctic foxes based on mitochondrial sequences, but provided no evidence for independent isolated evolutionary development of RABV in different arctic fox lineages. These data are invaluable to support future initiatives for arctic fox rabies control and elimination in Greenland.

]]>
<![CDATA[Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcca1

Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky’s disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic parasitic disease and suffer from inflammatory diseases of yet unknown etiology, possibly bearing infectious potential for other animal species and humans. This study highlights the value of monitoring terrestrial wildlife following the “One Health” notion, to estimate the incidence and the possible spread of zoonotic pathogens and to avoid animal to animal spillover as well as transmission to humans.

]]>
<![CDATA[Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc60b

Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores.

]]>
<![CDATA[Genetic and spatial characterization of the red fox (Vulpes vulpes) population in the area stretching between the Eastern and Dinaric Alps and its relationship with rabies and canine distemper dynamics]]> https://www.researchpad.co/article/5c915f6dd5eed0c48420a851

Information on the population dynamics of a reservoir species have been increasingly adopted to understand and eventually predict the dispersal patterns of infectious diseases throughout an area. Although potentially relevant, to date there are no studies which have investigated the genetic structure of the red fox population in relation to infectious disease dynamics. Therefore, we genetically and spatially characterised the red fox population in the area stretching between the Eastern and Dinaric Alps, which has been affected by both distemper and rabies at different time intervals. Red foxes collected from north-eastern Italy, Austria, Slovenia and Croatia between 2006–2012, were studied using a set of 21 microsatellite markers. We confirmed a weak genetic differentiation within the fox population using Bayesian clustering analyses, and we were able to differentiate the fox population into geographically segregated groups. Our finding might be due to the presence of geographical barriers that have likely influenced the distribution of the fox population, limiting in turn gene flow and spread of infectious diseases. Focusing on the Italian red fox population, we observed interesting variations in the prevalence of both diseases among distinct fox clusters, with the previously identified Italy 1 and Italy 2 rabies as well as distemper viruses preferentially affecting different sub-groups identified in the study. Knowledge of the regional-scale population structure can improve understanding of the epidemiology and spread of diseases. Our study paves the way for an integrated approach for disease control coupling pathogen, host and environmental data to inform targeted control programs in the future.

]]>
<![CDATA[Detection of Circovirus in Foxes with Meningoencephalitis, United Kingdom, 2009–2013]]> https://www.researchpad.co/article/5aeb1f67463d7e245022358b

A fox circovirus was identified in serum samples from foxes with unexplained neurologic signs by using viral metagenomics. Fox circovirus nucleic acid was localized in histological lesions of the cerebrum by in situ hybridization. Viruses from the family Circoviridae may have neurologic tropism more commonly than previously anticipated.

]]>
<![CDATA[Anti-predator meshing may provide greater protection for sea turtle nests than predator removal]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb954

The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland’s southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19–52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0–4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

]]>
<![CDATA[Temporal Patterns in the Abundance of a Critically Endangered Marsupial Relates to Disturbance by Roads and Agriculture]]> https://www.researchpad.co/article/5989dac6ab0ee8fa60bb26f0

The aim of this study was to investigate how landscape disturbance associated with roads, agriculture and forestry influenced temporal patterns in woylie (Bettongia penicillata) abundance before, during and after periods of rapid population change. Data were collected from an area of approximately 140,000 ha of forest within the Upper Warren region in south-western Australia. Woylie abundance was measured using cage trapping at 22 grid and five transect locations with varying degrees of landscape disturbance between 1994 and 2012. We found evidence that the distribution and abundance of woylies over time appears to be related to the degree of fragmentation by roads and proximity to agriculture. Sites furthest from agriculture supported a greater abundance of woylies and had slower rates of population decline. Sites with fewer roads had a greater abundance of woylies generally and a greater rate of increase in abundance after the implementation of invasive predator control. The results of this study suggest that landscape disturbance is less important at peak population densities, but during times of environmental and population change, sites less dissected by roads and agriculture better support woylie populations. This may be due to the role these factors play in increasing the vulnerability of woylies to introduced predators, population fragmentation, weed species invasion, mortality from road collisions or a reduction in available habitat. Strategies that reduce the impact of disturbance on woylie populations could include the rationalisation of forest tracks and consolidation of contiguous habitat through the acquisition of private property. Reducing the impact of disturbance in the Upper Warren region could improve the resilience of this critically important woylie population during future environmental change.

]]>
<![CDATA[Facial shape differences between rats selected for tame and aggressive behaviors]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc264

Domestication has been consistently accompanied by a suite of traits called the domestication syndrome. These include increased docility, changes in coat coloration, prolonged juvenile behaviors, modified function of adrenal glands and reduced craniofacial dimensions. Wilkins et al recently proposed that the mechanistic factor underlying traits that encompass the domestication syndrome was altered neural crest cell (NCC) development. NCC form the precursors to a large number of tissue types including pigment cells, adrenal glands, teeth and the bones of the face. The hypothesis that deficits in NCC development can account for the domestication syndrome was partly based on the outcomes of Dmitri Belyaev’s domestication experiments initially conducted on silver foxes. After generations of selecting for tameness, the foxes displayed phenotypes observed in domesticated species. Belyaev also had a colony of rats selected over 64 generations for either tameness or defensive aggression towards humans. Here we focus on the facial morphology of Belyaev’s tame, ‘domesticated’ rats to test whether: 1) tameness in rats causes craniofacial changes similar to those observed in the foxes; 2) facial shape, i.e. NCC-derived region, is distinct in the tame and aggressive rats. We used computed-tomography scans of rat skulls and landmark-based geometric morphometrics to quantify and analyze the facial skeleton. We found facial shape differences between the tame and aggressive rats that were independent of size and which mirrored changes seen in domesticated animals compared to their wild counterparts. However, there was no evidence of reduced sexual dimorphism in the face of the tame rats. This indicates that not all morphological changes in NCC-derived regions in the rats follow the pattern of shape change reported in domesticated animals or the silver foxes. Thus, certain phenotypic trends that are part of the domestication syndrome might not be consistently present in all experimental animal models.

]]>