ResearchPad - freshwater-biology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Molecular clocks, biogeography and species diversity in <i>Herichthys</i> with evaluation of the role of Punta del Morro as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification]]> https://www.researchpad.co/article/elastic_article_12834 Using molecular dated phylogenies and biogeographic reconstructions, the species diversity, biogeography and time frame of evolution of the genus Herichthys were evaluated. In particular, we test the role of Punta del Morro (PdM) as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification using several sets of calibrations. Species diversity in Herichthys is complex and the here employed dating methods suggest young age and rapid divergence for many species while species delimitation methods did not resolve these young species including both sympatric species pairs. Based on our molecular clock dating analyses, Herichthys has colonized its present distribution area significantly prior to the suggested vicariance by PdM (10–17.1 Ma vs. 5 to 7.5 Ma). The PdM constraint is in conflict with all other paleogeographic and fossil constraints including novel ones introduced in this study that are, however, congruent among each other. Our study demonstrates that any cichlid datings significantly older or younger than the bounds presented by our analyses and discussion have to be taken as highly questionable from the point of view of Middle American paleogeography and cichlid biogeography unless we allow the option that cichlid biogeography is completely independent from ecological and geological constraints.

]]>
<![CDATA[An interaction mechanism for the maintenance of fission–fusion dynamics under different individual densities]]> https://www.researchpad.co/article/elastic_article_8323 Animals often show high consistency in their social organisation despite facing changing environmental conditions. Especially in shoaling fish, fission–fusion dynamics that describe for which periods individuals are solitary or social have been found to remain unaltered even when density changed. This compensatory ability is assumed to be an adaptation towards constant predation pressure, but the mechanism through which individuals can actively compensate for density changes is yet unknown. The aim of the current study is to identify behavioural patterns that enable this active compensation. We compared the fission–fusion dynamics of two populations of the live-bearing Atlantic molly (Poecilia mexicana) that live in adjacent habitats with very different predator regimes: cave mollies that inhabit a low-predation environment inside a sulfidic cave with a low density of predatory water bugs (Belostoma sp.), and mollies that live directly outside the cave (henceforth called “surface” mollies) in a high-predation environment. We analysed their fission–fusion dynamics under two different fish densities of 12 and 6 fish per 0.36 m2. As expected, surface mollies spent more time being social than cave mollies, and this difference in social time was a result of surface mollies being less likely to discontinue social contact (once they had a social partner) and being more likely to resume social contact (once alone) than cave mollies. Interestingly, surface mollies were also less likely to switch among social partners than cave mollies. A random walk simulation predicted each population to show reduced social encounters in the low density treatment. While cave mollies largely followed this prediction, surface mollies maintained their interaction probabilities even at low density. Surface mollies achieved this by a reduction in the size of a convex polygon formed by the group as density decreased. This may allow them to largely maintain their fission–fusion dynamics while still being able to visit large parts of the available area as a group. A slight reduction (21%) in the area visited at low densities was also observed but insufficient to explain how the fish maintained their fission–fusion dynamics. Finally, we discuss potential movement rules that could account for the reduction of polygon size and test their performance.

]]>
<![CDATA[First transcriptome analysis of bryozoan Fredericella sultana, the primary host of myxozoan parasite Tetracapsuloides bryosalmonae]]> https://www.researchpad.co/article/Nbc223737-c945-4d07-b32b-dae09e0ab6f2

Bryozoans are aquatic invertebrate moss animals that are found worldwide. Fredericella sultana is a freshwater bryozoan and is the most common primary host of myxozoan parasite, Tetracapsuloides bryosalmonae. However, limited genomic resources are available for this bryozoan, which hampers investigations into the molecular mechanisms of host-parasite interactions. To better understand these interactions, there is a need to build a transcriptome dataset of F. sultana, for functional genomics analysis by large-scale RNA sequencing. Total RNA was extracted from zooids of F. sultana cultivated under controlled laboratory conditions. cDNA libraries were prepared and were analyzed by the Illumina paired-ends sequencing. The sequencing data were used for de novo transcriptome assembly and functional annotation. Approximately 118 million clean reads were obtained, and assembled into 85,544 contigs with an average length of 852 bp, an N50 of 1,085 bp, and an average GC content 51.4%. A total of 23,978 (28%) contigs were annotated using BLASTX analysis. Of these transcripts, 4,400 contigs had highest similarity to brachiopod species Lingula anatina. Based on Gene ontology (GO) annotation, the most highly scored categories of biological process were categorized into cellular process (27%), metabolic process (24%), and biological regulation (8%) in the transcriptome of F. sultana. This study gives first insights into the transcriptome of F. sultana and provides comprehensive genetic resources for the species. We believe that the transcriptome of F. sultana will serve as a useful genomic dataset to accelerate research of functional genomics and will help facilitate whole genome sequencing and annotation. Candidate genes potentially involved in growth, proteolysis, and stress/immunity-response were identified, and are worthy of further investigation.

]]>
<![CDATA[Identifying environmental drivers of benthic diatom diversity: the case of Mediterranean mountain ponds]]> https://www.researchpad.co/article/Ne5d2a84b-80b2-4ca6-8508-b7dd39801f98

This study aims at elucidating the environmental factors controlling benthic diatom diversity and uniqueness in Mediterranean mountain ponds. Samples of periphytic diatoms were collected in 45 ponds in Andalusia, south of Spain, and analysed by standard methods. Data analysis reveals that diatom diversity is mainly controlled by elevation and hydroperiod. Contrary to the usual findings in the literature, the highest scores on Shannon’s diversity index were found in high-elevation temporary ponds, but this effect is hidden by lake clustering in the analysed dataset. Significant distance-decay similarity (DDS) trends were detected in the analysis of floristic composition among the samples, stressing the importance of spatial factors that may override the effect of other abiotic factors. These findings highlight the role of isolation and dispersal limitation in the configuration of the biogeographical patterns of benthic diatoms.

]]>
<![CDATA[Impact of the antidepressant citalopram on the behaviour of two different life stages of brown trout]]> https://www.researchpad.co/article/N47c83d32-6f0c-44d3-9963-fbee3edcdd74

Background

Over the last two decades, there has been a constant increase in prescription rates of antidepressants. In parallel, neuroactive pharmaceuticals are making their way into aquatic environments at increasing concentrations. Among the antidepressants detected in the environment citalopram, a selective serotonin reuptake inhibitor, is one of the most commonly found. Given citalopram is specifically designed to alter mood and behaviour in humans, there is growing concern it can adversely affect the behaviour on non-target wildlife

Methods

In our study, brown trout were exposed to citalopram (nominal concentrations: 1, 10, 100, 1000 µg/L) in two different life stages. Larvae were exposed at 7 and 11 °C from the eyed ova stage until 8 weeks post yolk sac consumption, and juvenile brown trout were exposed for 4 weeks at 7 °C. At both stages we measured mortality, weight, length, tissue citalopram concentration, behaviour during exposure and behaviour in a stressfull environment. For brown trout larvae additionally hatching rate and heart rate, and for juvenile brown trout the tissue cortisol concentration were assessed.

Results

During the exposure, both larvae and juvenile fish exposed to the highest test concentration of citalopram (1 mg/L) had higher swimming activity and spent longer in the upper part of the aquaria compared to control fish, which is an indicator for decreased anxiety. Most probably due to the higher swimming activity during the exposure, the juveniles and larvae exposed to 1 mg/L citalopram showed decreased weight and length. Additionally, in a stressful artificial swimming measurement device, brown trout larvae displayed the anxiolytic effect of the antidepressant by reduced swimming activity during this stress situation, already at concentrations of 100 µg/L citalopram. Chemical analysis of the tissue revealed rising citalopram tissue concentrations with rising exposure concentrations. Tissue concentrations were 10 times higher in juvenile fish compared to brown trout larvae. Fish plasma concentrations were calculated, which exceeded human therapeutic levels for the highest exposure concentration, matching the behavioural results. Developmental parameters like hatching rate and heart rate, as well as mortality and tissue cortisol content were unaffected by the antidepressant. Overall, we could trace the pharmacological mode of action of the antidepressant citalopram in the non-target organism brown trout in two different life stages.

]]>
<![CDATA[Remarks on Mastigodiaptomus (Calanoida: Diaptomidae) from Mexico using integrative taxonomy, with a key of identification and three new species]]> https://www.researchpad.co/article/N97fd7cea-2d60-4805-a426-afa492d38234

Background

In Mexico, species of four families of free-living calanoid copepods have been recorded as inhabitants of several freshwater systems. These families are Centropagidae, Temoridae, Pseudodiaptomidae and Diaptomidae. The genera Leptodiaptomus and Mastigodiaptomus are the most speciose diaptomid genera in Mexico, and they inhabit natural and artificial lakes, ephemeral ponds, springs, and caverns. Leptodiaptomus is considered as an endemic Nearctic genus, whereas Mastigodiaptomus is a widely distributed Neotropical genus in the southern USA, Mexico, the Caribbean Islands and Central America. Based on new and recent evidence, Mastigodiaptomus diversity has been underestimated: six species of the genus were known before 2000. In this work three new Mastigodiaptomus species have been described from different regions of Mexico by using integrative taxonomy. We also gave amended diagnosis of M. nesus Bowman (1986) and M. patzcuarensis s. str. (Kiefer, 1938).

Methods

In this work, the taxonomic status of the species was clarified using modern, integrative method based on the COI gene as a DNA marker, plus micro-structural analysis (based on SEM and ligth microscopy).

Results

Three new species of Mastigodiaptomus were described based on genetic and morphological analyses: M. alexei sp. n., M. ha sp. n. and M. cihuatlan sp. n. Also amended description of M. nesus, morphological variation of M. patzcuarensis s. str., and a comparison of them with all known sequences within the genus are provided. These new findings show that in Mastigodiaptomus differences in several cuticular microstructures of several appendages (such as the antennules, the fifth legs, or the urosomites of these copepods) agree with the interspecific genetic divergence >3% observed in sequences of the COI gene, and the integration of this information is a powerful tool in species delineation.

]]>
<![CDATA[Appetite regulating genes may contribute to herbivory versus carnivory trophic divergence in haplochromine cichlids]]> https://www.researchpad.co/article/N6b34be1c-e23f-4a70-9ee0-be39bdf0cc03

Feeding is a complex behaviour comprised of satiety control, foraging, ingestion and subsequent digestion. Cichlids from the East African Great Lakes are renowned for their diverse trophic specializations, largely predicated on highly variable jaw morphologies. Thus, most research has focused on dissecting the genetic, morphological and regulatory basis of jaw and teeth development in these species. Here for the first time we explore another aspect of feeding, the regulation of appetite related genes that are expressed in the brain and control satiety in cichlid fishes. Using qPCR analysis, we first validate stably expressed reference genes in the brain of six haplochromine cichlid species at the end of larval development prior to foraging. We next evaluate the expression of 16 appetite related genes in herbivorous and carnivorous species from the parallel radiations of Lake Tanganyika, Malawi and Victoria. Interestingly, we find increased expression of two appetite-regulating genes (anorexigenic genes), cart and npy2r, in the brain of carnivorous species in all the three lakes. This supports the notion that appetite gene regulation might play a part in determining trophic niche specialization in divergent cichlid species, already prior to exposure to different diets. Our study contributes to the limited body of knowledge on the neurological circuitry that controls feeding transitions and adaptations in cichlids and other teleosts.

]]>
<![CDATA[Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand]]> https://www.researchpad.co/article/5bfae8c7d5eed0c484840ce0

Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid, in eight tributary streams in the upper Nan River drainage basin (n = 30–100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated (P < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global FST = 0.022, P < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized FST (P < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.

]]>
<![CDATA[Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene]]> https://www.researchpad.co/article/5c26b46ed5eed0c484762dd8

Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.

]]>
<![CDATA[Diatom ecological response to deposition of the 833-850 CE White River Ash (east lobe) ashfall in a small subarctic Canadian lake]]> https://www.researchpad.co/article/5c605d85d5eed0c4847d06cb

A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117–1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090°N, −114.3719°W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada. Here we analyze changes in diatom assemblages to assess impact of tephra deposition on the aquatic biota of a subarctic lake. In a well-dated core constrained by 8 radiocarbon dates, diatom counts were carried out at 1-mm intervals through an interval spanning  1 cm above and below the tephra layer with each 1 mm sub-sample represented about 2 years of deposition. Non-metric Multidimensional Scaling (NMDS) and Stratigraphically Constrained Incremental Sum of Squares (CONISS) analyses were carried out and three distinct diatom assemblages were identified throughout the interval. The lowermost “Pre-WRAe Assemblage (Pre-WRAeA)” was indicative of slightly acidic and eutrophic lacustrine conditions. Winter deposition of the tephra layer drove a subsequent diatom flora shift to the “WRAe Assemblage (WRAeA)” the following spring. The WRAeA contained elevated abundances of taxa associated with oligotrophic, nutrient depleted and slightly more alkaline lake waters. These changes were only apparent in samples within the WRAe containing interval indicating that they were short lived and only sustained for a single year of deposition. Immediately above the WRAe horizon, a third, “Post-WRAe Assemblage (Post-WRAeA)” was observed. This assemblage was initially similar to that of the Pre-WRAeA but gradually became more distinct upwards, likely due to climatic patterns independent of the WRAe event. These results suggest that lacustrine environments are sensitive to perturbations such as deposition of ash fall, but that ecological communities in subarctic systems can also have high resilience and can recover rapidly. If subsampling of the freeze cores was carried out at a more standard resolution (0.5–1 cm) these subtle diatom ecological responses to perturbation associated with the WRAe depositional event would not have been observed. This research illustrates the importance of high-resolution subsampling when studying the environmental impact of geologically “near instantaneous” events such as episodic deposition of ashfalls.

]]>
<![CDATA[Freshwater carbon and nutrient cycles revealed through reconstructed population genomes]]> https://www.researchpad.co/article/5c26b15ad5eed0c48475a3d3

Although microbes mediate much of the biogeochemical cycling in freshwater, the categories of carbon and nutrients currently used in models of freshwater biogeochemical cycling are too broad to be relevant on a microbial scale. One way to improve these models is to incorporate microbial data. Here, we analyze both genes and genomes from three metagenomic time series and propose specific roles for microbial taxa in freshwater biogeochemical cycles. Our metagenomic time series span multiple years and originate from a eutrophic lake (Lake Mendota) and a humic lake (Trout Bog Lake) with contrasting water chemistry. Our analysis highlights the role of polyamines in the nitrogen cycle, the diversity of diazotrophs between lake types, the balance of assimilatory vs. dissimilatory sulfate reduction in freshwater, the various associations between types of phototrophy and carbon fixation, and the density and diversity of glycoside hydrolases in freshwater microbes. We also investigated aspects of central metabolism such as hydrogen metabolism, oxidative phosphorylation, methylotrophy, and sugar degradation. Finally, by analyzing the dynamics over time in nitrogen fixation genes and Cyanobacteria genomes, we show that the potential for nitrogen fixation is linked to specific populations in Lake Mendota. This work represents an important step towards incorporating microbial data into ecosystem models and provides a better understanding of how microbes may participate in freshwater biogeochemical cycling.

]]>
<![CDATA[Founder effects drive the genetic structure of passively dispersed aquatic invertebrates]]> https://www.researchpad.co/article/5c26b2b4d5eed0c48475e2ab

Populations of passively dispersed organisms in continental aquatic habitats typically show high levels of neutral genetic differentiation despite their high dispersal capabilities. Several evolutionary factors, including founder events, local adaptation, and life cycle features such as high population growth rates and the presence of propagule banks, have been proposed to be responsible for this paradox. Here, we have modeled the colonization process to assess the impact of migration rate, population growth rate, population size, local adaptation and life-cycle features on the population genetic structure in these organisms. Our simulations show that the strongest effect on population structure are persistent founder effects, resulting from the interaction of a few population founders, high population growth rates, large population sizes and the presence of diapausing egg banks. In contrast, the role of local adaptation, genetic hitchhiking and migration is limited to small populations in these organisms. Our results indicate that local adaptation could have different impact on genetic structure in different groups of zooplankters.

]]>