ResearchPad - freshwater-fish https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Sustainability management of short-lived freshwater fish in human-altered ecosystems should focus on adult survival]]> https://www.researchpad.co/article/elastic_article_7859 Fish populations globally are susceptible to endangerment through exploitation and habitat loss. We present theoretical simulations to explore how reduced adult survival (age truncation) might affect short-lived freshwater fish species in human-altered contemporary environments. Our simulations evaluate two hypothetical "average fish" and five example fish species of age 1 or age 2 maturity. From a population equilibrium baseline representing a natural, unaltered environment we impose systematic reductions in adult survival and quantify how age truncation affects the causes of variation in population growth rate. We estimate the relative contributions to population growth rate arising from simulated temporal variation in age-specific vital rates and population structure. At equilibrium and irrespective of example species, population structure (first adult age class) and survival probability of the first two adult age classes are the most important determinants of population growth. As adult survival decreases, the first reproductive age class becomes increasingly important to variation in population growth. All simulated examples show the same general pattern of change with age truncation as known for exploited, longer-lived fish species in marine and freshwater environments. This implies age truncation is a general potential concern for fish biodiversity across life history strategies and ecosystems. Managers of short-lived, freshwater fishes in contemporary environments often focus on supporting reproduction to ensure population persistence. However, a strong focus on water management to support reproduction may reduce adult survival. Sustainability management needs a focus on mitigating adult mortality in human-altered ecosystems. A watershed spatial extent embracing land and water uses may be necessary to identify and mitigate causes of age truncation in freshwater species. Achieving higher adult survival will require paradigm transformations in society and government about water management priorities.

]]>
<![CDATA[Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes]]> https://www.researchpad.co/article/N810c6abb-a507-4d5b-89ae-f4ccddeb69e1

The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.

]]>
<![CDATA[Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal]]> https://www.researchpad.co/article/5c6f14fcd5eed0c48467ac14

Nile tilapia (Oreochromis niloticus) is an African freshwater fish that displays a genetic sex determination system (XX|XY) where high temperatures (above 32°C to 36.5°C) induce masculinization. In Nile tilapia, the thermosensitive period was reported from 10 to 30 days post fertilization. In their natural environment, juveniles may encounter high temperatures that are above the optimal temperature for growth (27–30°C). The relevance of the thermal sex reversal mechanism in a natural context remains unclear. The main objective of our study is to determine whether sexually undifferentiated juveniles spontaneously prefer higher, unfavorable temperatures and whether this choice skews the sex ratio toward males. Five full-sib progenies (from 100% XX crosses) were subjected to (1) a horizontal three-compartment thermal step gradient (thermal continuum 28°C– 32°C– 36.5°C) during the thermosensitive period, (2) a control continuum (28°C– 28°C– 28°C) and (3) a thermal control tank (36.5°C). During the first days of the treatment, up to an average of 20% of the population preferred the masculinizing compartment of the thermal continuum (36.5°C) compared to the control continuum. During the second part of the treatment, juveniles preferred the lower, nonmasculinizing 32°C temperature. This short exposure to higher temperatures was sufficient to significantly skew the sex ratio toward males, compared to congeners raised at 28°C (from 5.0 ± 6.7% to 15.6 ± 16.5% of males). The proportion of males was significantly different in the thermal continuum, thermal control tank and control continuum, and it was positively correlated among populations. Our study shows for the first time that Nile tilapia juveniles can choose a masculinizing temperature during a short period of time. This preference is sufficient to induce sex reversal to males within a population. For the first time, behavior is reported as a potential player in the sex determination mechanism of this species.

]]>
<![CDATA[Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing]]> https://www.researchpad.co/article/5c706772d5eed0c4847c7038

Planktivorous fish predation directly affects zooplankton biomass, community and size structure, and may indirectly induce a trophic cascade to phytoplankton. However, it is not clear how quickly the zooplankton community structure and the cascading effects on phytoplankton recover to the unaffected state (i.e. resilience) once short-term predation by fish stops. The resilience has implications for the ecological quality and restoration measures in aquatic ecosystems. To assess the short-term zooplankton resilience against fish predation, we conducted a mesocosm experiment consisting of 10 enclosures, 6 with fish and 4 without fish. Plankton communities from a natural lake were used to establish phytoplankton and zooplankton in the mesocosms. High biomasses (about 20 g wet mass m-3) of juvenile planktivorous fish (perch, Perca fluviatilis) were allowed to feed on zooplankton in fish enclosures for four days. Thereafter, we removed fish and observed the recovery of the zooplankton community and its cascading effect on trophic interactions in comparison with no fish enclosures for four weeks. Short-term fish predation impaired resilience in zooplankton community by modifying community composition, as large zooplankton, such as calanoids, decreased just after fish predation and did not re-appear afterwards, whereas small cladocerans and rotifers proliferated. Total zooplankton biomass increased quickly within two weeks after fish removal, and at the end even exceeded the biomass measured before fish addition. Despite high biomass, the dominance of small zooplankton released phytoplankton from grazer control in fish enclosures. Accordingly, the zooplankton community did not recover from the effect of fish predation, indicating low short-term resilience. In contrast, in no fish enclosures without predation disturbance, a high zooplankton:phytoplankton biomass ratio accompanied by low phytoplankton yield (Chlorophyll-a:Total phosphorus ratio) reflected phytoplankton control by zooplankton over the experimental period. Comprehensive views on short and long-term resilience of zooplankton communities are essential for restoration and management strategies of aquatic ecosystems to better predict responses to global warming, such as higher densities of planktivorous fish.

]]>
<![CDATA[Breeding behavior in the blind Mexican cavefish and its river-dwelling conspecific]]> https://www.researchpad.co/article/5c76fe22d5eed0c484e5b593

Fish reproductive patterns are very diverse in terms of breeding frequency, mating system, sexual dimorphisms and selection, mate choice, spawning site choice, courtship patterns, spawning behaviors and parental care. Here we have compared the breeding behavior of the surface-dwelling and cave-dwelling morphs of the characiform A. mexicanus, with the goals of documenting the spawning behavior in this emerging model organism, its possible evolution after cave colonization, and the sensory modalities involved. Using infrared video recordings, we showed that cave and surface Astyanax spawning behavior is identical, occurs in the dark, and can be divided into 5 rapid phases repeated many times, about once per minute, during spawning sessions which last about one hour and involve one female and several males. Such features may constitute “pre-adaptive traits” which have facilitated fish survival after cave colonization, and may also explain how the two morphs can hybridize in the wild and in the laboratory. Accordingly, cross-breeding experiments involving females of one morphotype and males of the other morphotype showed the same behavior including the same five phases. However, breeding between cavefish females and surface fish males was more frequent than the reverse. Finally, cavefish female pheromonal solution was able to trigger strong behavioral responses in cavefish males–but not on surface fish males. Lastly, egg production seemed higher in surface fish females than in cavefish females. These results are discussed with regards to the sensory modalities involved in triggering reproductive behavior in the two morphs, as well as its possible ongoing evolution.

]]>
<![CDATA[An ecologically constrained procedure for sensitivity analysis of Artificial Neural Networks and other empirical models]]> https://www.researchpad.co/article/5c5b5252d5eed0c4842bc656

Sensitivity analysis applied to Artificial Neural Networks (ANNs) as well as to other types of empirical ecological models allows assessing the importance of environmental predictive variables in affecting species distribution or other target variables. However, approaches that only consider values of the environmental variables that are likely to be observed in real-world conditions, given the underlying ecological relationships with other variables, have not yet been proposed. Here, a constrained sensitivity analysis procedure is presented, which evaluates the importance of the environmental variables considering only their plausible changes, thereby exploring only ecological meaningful scenarios. To demonstrate the procedure, we applied it to an ANN model predicting fish species richness, as identifying relationships between environmental variables and fish species occurrence in river ecosystems is a recurring topic in freshwater ecology. Results showed that several environmental variables played a less relevant role in driving the model output when that sensitivity analysis allowed them to vary only within an ecologically meaningful range of values, i.e. avoiding values that the model would never handle in its practical applications. By comparing percent changes in MSE between constrained and unconstrained sensitivity analysis, the relative importance of environmental variables was found to be different, with habitat descriptors and urbanization factors that played a more relevant role according to the constrained procedure. The ecologically constrained procedure can be applied to any sensitivity analysis method for ANNs, but obviously it can also be applied to other types of empirical ecological models.

]]>
<![CDATA[Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods]]> https://www.researchpad.co/article/5c5ca318d5eed0c48441f14d

The use of environmental DNA (eDNA) methods for community analysis has recently been developed. High-throughput parallel DNA sequencing (HTS), called eDNA metabarcoding, has been increasingly used in eDNA studies to examine multiple species. However, eDNA metabarcoding methodology requires validation based on traditional methods in all natural ecosystems before a reliable method can be established. To date, relatively few studies have performed eDNA metabarcoding of fishes in aquatic environments where fish communities were intensively surveyed using multiple traditional methods. Here, we have compared fish communities’ data from eDNA metabarcoding with seven conventional multiple capture methods in 31 backwater lakes in Hokkaido, Japan. We found that capture and field surveys of fishes were often interrupted by macrophytes and muddy sediments in the 31 lakes. We sampled 1 L of the surface water and analyzed eDNA using HTS. We also surveyed the fish communities using seven different capture methods, including various types of nets and electrofishing. At some sites, we could not detect any eDNA, presumably because of the polymerase chain reaction (PCR) inhibition. We also detected the marine fish species as sewage-derived eDNA. Comparisons of eDNA metabarcoding and capture methods showed that the detected fish communities were similar between the two methods, with an overlap of 70%. Thus, our study suggests that to detect fish communities in backwater lakes, the performance of eDNA metabarcoding with the use of 1 L surface water sampling is similar to that of capturing methods. Therefore, eDNA metabarcoding can be used for fish community analysis but environmental factors that can cause PCR inhibition, should be considered in eDNA applications.

]]>
<![CDATA[Uncooked fish consumption among those at risk of Opisthorchis viverrini infection in central Thailand]]> https://www.researchpad.co/article/5c5ca298d5eed0c48441e72d

In contrast to northern and northeastern Thailand, central Thailand was believed not to be endemic for Opisthorchis viverrini (OV). Fieldwork conducted in a rural area of central Thailand revealed that the prevalence and incidence were relatively high compared with regional average data. We hypothesized that the behavioural-psycho-social background of the study population might play an important role in the high burden of the infection. As a result, a qualitative study was conducted to highlight potential social determinants of the infection dynamics to gain greater understanding of the risk behaviours and their contexts. A qualitative study using focus group discussion and in-depth interviews was conducted in Na-ngam Village, Chachoengsao Province from 2012–14. Framework analysis was used to explore associations between infection and thematic content. Social influence showed a strong impact on infection dynamics of OV infection. Our results revealed that Koi pla (chopped raw fish salad) remains a popular dish in the community, as the dish itself represents northeastern culture. The cultural norm had been transferred from ancestors to their descendants. Some elders complained that discontinuing the consumption of Koi pla went against old traditions with respect to cultural norms and socialization. In contrast, modern education teaches about hygiene including OV infection risks, and accordingly teenagers and young adults were reported to modify their lifestyles including their eating habits. Children are a potential key to pass knowledge to their parents and school-based education programs can serve as a practical hub for knowledge dissemination. However, health education alone might not lead to behavioural change in other age groups. Therefore, more efforts are needed to support the transformation.

]]>
<![CDATA[Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species]]> https://www.researchpad.co/article/5c5b52d9d5eed0c4842bd127

Reliable species identification methods are important for industrial environmental monitoring programs. Probe based real-time quantitative polymerase chain reaction (qPCR) provides an accurate, cost-effective and high-throughput method for species identification. Here we present the development and validation of species-specific primers and probes for the cytochrome c oxidase (COI) gene for the identification of eight ecologically and economically important freshwater fish species: lake whitefish (Coregonus clupeaformis), yellow perch (Perca flavescens), rainbow smelt (Osmerus mordax), brook trout (Salvelinus fontinalis), smallmouth bass (Micropterus dolomieu), round whitefish (Prosopium cylindraceum), spottail shiner (Notropis hudsonius) and deepwater sculpin (Myoxocephalus thompsonii). In order to identify novel primer-probe sets with maximum species-specificity, two separate primer-probe design criteria were employed. Highest ranked primer-probe sets from both methods were assayed to identify sequences that demonstrated highest specificity. Specificity was determined using control species from same genus and non-target species from different genus. Selected primer-probe sets were optimized for annealing temperature and primer-probe concentrations to identify minimum reagent parameters. The selected primer-probe sets were highly sensitive, with DNA concentrations as low as 1 ng adequate for positive species identification. A decoder algorithm was developed based on the cumulative qPCR results that allowed for full automation of species identification. Blinded experiments revealed that the combination of the species-specific primer/probes sets with the automated species decoder resulted in target species identification with 100% accuracy. We also conducted a cost/time comparison analysis between the qPCR assays established in this study with other species identification methods. The qPCR technique was the most cost-effective and least time consuming method of species identification. In summary, probe-based multiplex qPCR assays provide a rapid and accurate method for freshwater fish species identification, and the methodology established in this study can be utilized for various other species identification initiatives.

]]>
<![CDATA[Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures]]> https://www.researchpad.co/article/5c5217cdd5eed0c4847945e9

Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel.

]]>
<![CDATA[Age structure of the Australian lungfish (Neoceratodus forsteri)]]> https://www.researchpad.co/article/5c52180fd5eed0c484796f65

The Australian lungfish has been studied for more than a century without any knowledge of the longevity of the species. Traditional methods for ageing fish, such as analysis of otolith (ear stone) rings is complicated in that lungfish otoliths differ from teleost fish in composition. As otolith sampling is also lethal, this is not appropriate for a protected species listed under Australian legislation. Lungfish scales were removed from 500 fish from the Brisbane, Burnett and Mary rivers. A sub–sample of scales (85) were aged using bomb radiocarbon techniques and validated using scales marked previously with oxytetracycline. Lungfish ages ranged from 2.5–77 years of age. Estimated population age structures derived using an Age Length Key revealed different recruitment patterns between river systems. There were statistically significant von Bertalanffy growth model parameters estimated for each of the three rivers based on limited sample sizes. In addition, length frequency distributions between river systems were also significantly different. Further studies will be conducted to review drivers that may explain these inter-river differences.

]]>
<![CDATA[Protecting endemic species from African Catfish invasion when community behavioral responses get in the way]]> https://www.researchpad.co/article/5c2e7fe1d5eed0c48451bf08

Exotic invasive fish species, when introduced into pristine natural environments, threaten the survival of many endemic species. Management challenges associated with controlling their further spread and protecting endemic species can be exacerbated when the same exotic fish species also provide gastronomical benefits to humans. Local human populations can switch their consumption preferences toward the exotic fish species, leading to an increase in their spread rate and control costs. Using the example of the African Catfish invasion in a freshwater lake, we develop a bioeconomic model of its optimal control, which also incorporates the behavioral challenges arising from a gastronomical preference for the exotic fish species. In particular, the cost of catfish control increases with its consumption demand, which, through altering the inter-species dynamics, threatens the survival of endemic fish species. The manager has at his disposal the market and non-market values of the endemic fish species to invest toward their preservation efforts. The non-market value of the endemic species is further modeled as endogenous to the community’s preference switching. Results suggest that a late detection of the exotic fish species in freshwater bodies can increase their control costs enough to make their eradication challenging, especially when the manager faces financial resource constraints. The presence of behavioral effects adds to this challenge — directly, through increasing the control costs, and indirectly, through lowering the non-market value of the endemic fish species.

]]>
<![CDATA[Modular structure in fish co-occurrence networks: A comparison across spatial scales and grouping methodologies]]> https://www.researchpad.co/article/5c1d5bc9d5eed0c4846ec993

Network modules are used for diverse purposes, ranging from delineation of biogeographical provinces to the study of biotic interactions. We assess spatial scaling effects on modular structure, using a multi-step process to compare fish co-occurrence networks at three nested scales. We first detect modules with simulated annealing and use spatial clustering tests (interspecific distances among species’ range centroids) to determine if modules consist of species with broadly overlapping ranges; strong spatial clustering may reflect environmental filtering, while absence of spatial clustering may reflect positive interspecific relationships (commensalism or mutualism). We then use non-hierarchical, multivariate cluster analysis as an alternative method to identify fish subgroups, we repeat spatial clustering tests for the multivariate clusters, then compare spatial clustering results among modules and clusters. Next, we compare species lists within modules and clusters, and estimate congruence as the proportion of species assigned to the same groups by the two methods. Finally, we use a well-documented nest associate complex (fishes that deposit eggs in the gravel nests of a common host) to assess whether strong within-group associations may, in fact, reflect positive interspecific relationships. At each scale, 2–4 network modules were detected but a consistent relationship between scale and the number of modules was not observed. Significant spatial clustering was detected at all scales for network modules and multivariate clusters but was less prevalent at smaller scales. Congruence between modules and clusters was always < 90% and generally decreased as the number of groups increased. At all scales, the complete nest associate complex was completely preserved within a single network module, but not within a single multivariate cluster. Collectively, our results suggest that network modules are promising tools for studying positive interactions and that smaller scales may be preferable in this research.

]]>
<![CDATA[Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir]]> https://www.researchpad.co/article/5c1c0b13d5eed0c4844273db

Biodiversity has to be accurately evaluated to assess more precisely possible dam effects on fish populations, in particular on the most biodiverse rivers such as the Mekong River. To improve tools for fish biodiversity assessment, a methodological survey was performed in the surroundings of a recent hydropower dam in the Mekong basin, the Nam Theun 2 project. Results of two different approaches, experimental surface gillnets capture and environmental DNA metabarcoding assays based on 12S ribosomal RNA and cytochrome b, were compared during 3 years (2014–2016). Pitfalls and benefits were identified for each method but the combined use of both approaches indisputably allows describing more accurately fish diversity around the reservoir. Importantly, striking convergent results were observed for biodiversity reports. 75% of the fish species caught by gillnets (62/82) were shown by the metabarcoding study performed on DNA extracted from water samples. eDNA approach also revealed to be sensitive by detecting 30 supplementary species known as present before the dam construction but never caught by gillnets during 3 years. Furthermore, potential of the marker-genes study might be underestimated since it was not possible to assign some sequences at lower taxonomic levels. Although 121 sequences were generated for this study, a third of species in the area, that exhibits high endemism, are still unknown in DNA databases. Efforts to complete local reference libraries must continue to improve the taxonomic assignment quality when using the non-invasive and promising eDNA approach. These results are of broader interest because of increasing number of hydropower projects in the Mekong Basin. They reveal the crucial importance to sample tissues/DNA of species before dam projects, i.e. before the species could become endangered and difficult to catch, to obtain more precise biomonitoring in the future as we believe eDNA metabarcoding will rapidly be integrated as a standard tool in such studies.

]]>
<![CDATA[Assessing impact of exogenous features on biotic phenomena in the presence of strong spatial dependence: A lake sturgeon case study in natural stream settings]]> https://www.researchpad.co/article/5c117b3dd5eed0c4846985fd

Modeling spatially explicit data provides a powerful approach to identify the effects of exogenous features associated with biological processes, including recruitment of stream fishes. However, the complex spatial and temporal dynamics of the stream and the species’ reproductive and early life stage behaviors present challenges to drawing valid inference using traditional regression models. In these settings it is often difficult to ensure the spatial independence among model residuals—a key assumption that must be met to ensure valid inference. We present statistical models capable of capturing complex residual anisotropic patterns through the addition of spatial random effects within an inferential framework that acknowledges uncertainty in the data and parameters. Proposed models are used to explore the impact of environmental variables on Lake sturgeon (Acipenser fulvescens) reproduction, particularly questions about patterns in egg deposition. Our results demonstrate the need to apply valid statistical methods to identify relationships between response variables, e.g., egg counts, across locations, and environmental covariates in the presence of strong and anisotropic autocorrelation in stream systems. The models may be applied to other settings where gamete distribution or, more generally, other biotic phenomena may be associated with spatially dynamic and anisotropic processes.

]]>
<![CDATA[Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador]]> https://www.researchpad.co/article/5c0ed748d5eed0c484f13e35

Freshwater fish populations are rapidly declining globally due to the impacts of rapid climate change and existing non-climatic anthropogenic stressors. In response to these drivers, freshwater fishes are responding by shifting their distribution range, altering the timing of migration and spawning and through demographic processes. By 2050, the mean daily air temperature is predicted to increase by 2 to 3 degrees C in insular Newfoundland and by 3 to 4 degrees C in Labrador. Mean daily precipitation is also projected to increase in all locations, with increased intensity projected for several regions. To mitigate negative consequences of these changes, managers require analytical approaches that describe the vulnerability of fish to climate change. To address this need, the current study adopts the National Marine Fisheries Service vulnerability assessment framework to characterize the vulnerability of freshwater fishes in Newfoundland and Labrador. Twelve vulnerability indicators were developed from an extensive literature review and applied to the assessment. Experts were solicited using an online questionnaire survey and scores for exposure, sensitivity and adaptive capacity were collated and analyzed to derive a final vulnerability score and rank for each species. The analysis showed one species to be of high—very high vulnerability, two species were highly vulnerable while four species were moderately vulnerable to climate change. The result provides insight into the factors that drive vulnerability of freshwater fishes in the region, this information is significant to decision-makers and other stakeholders engaged in managing freshwater fish resources in Newfoundland and Labrador.

]]>
<![CDATA[Multiple indicators of rice remains and the process of rice domestication: A case study in the lower Yangtze River region, China]]> https://www.researchpad.co/article/5c0ed75cd5eed0c484f13fc5

The process of rice domestication has been studied for decades based on changing morphological characteristics in assemblages of both macroremains, such as charred seeds and spikelet bases, and microremains, such as phytoliths, esp. bulliform and double-peaked phytoliths. The applicability of these indicators in determining if a specific assemblage is wild or domesticated, however, is rarely discussed. To understand the significance of these indicators in the determination of domestication, we collected 38 archaeological samples from eight Neolithic sites, dating from 10-2ka BP, in the lower Yangtze River region to analyze and compare the changes of these different indicators over eight thousand years. The data demonstrate that the comprehensive analysis of multiple indicators may be the best method to study the process of rice domestication developed thus far. An assemblage of rice remains can be identified as domesticated forms if they meet the following criteria simultaneously: 1) the proportion of domesticated-type bulliform phytoliths is more than 73%; and 2) the proportion of domesticated-type rice spikelet bases is higher than 75%. Furthermore, we found that each indicator tends to change steadily and gradually over time, and each stabilized at a different time, suggesting that the characteristics of domesticated rice developed slowly and successively. Changes of multiple indicators during the period between 10,000–2,000 yr BP indicate that the process of rice domestication in the lower Yangtze River region lasted as long as ca. 6,000 years during the Neolithic, and can be divided into three stages with the turning points in the middle Hemudu-late Majiabang culture (6,500–5,800yr BP) and the late Liangzhu culture (4,600–4,300yr BP).

]]>
<![CDATA[Phenotypic plasticity in specialists: How long-spined larval Sympetrum depressiusculum (Odonata: Libellulidae) responds to combined predator cues]]> https://www.researchpad.co/article/5b87836d40307c3c4509766f

Phenotypic plasticity is a common defensive strategy in species experiencing variable predation risk, such as habitat generalists. Larvae of generalist dragonflies can elongate their abdominal spines in environments with fish, but long spines render larvae susceptible to invertebrate predators. Long-spined specialists adapted to fish-heavy habitats are not expected to have phenotypic plasticity in this defence trait, but no empirical studies have been undertaken. Moreover, in comparison to prey responding to multiple predators that induce similar phenotypes, relatively little is known regarding how species react to combinations of predators that favour opposing traits. We examined plasticity of larval dragonfly Sympetrum depressiusculum, a long-spined habitat specialist. In a rearing experiment, larvae were exposed to four environments: (i) no predator control, (ii) fish cues (Carassius auratus), (iii) invertebrate cues (Anax imperator), as well as (iv) a combination of (ii) and (iii). Compared with the control, fish but not invertebrate cues resulted in longer spines for two (one lateral, one dorsal) of the six spines measured. Interestingly, the combined-cue treatment led to the elongation of all four dorsal spines compared with the fish treatment alone, whereas lateral spines showed no response. Our experiment provided evidence of morphological plasticity in a long-spined specialist dragonfly. We showed that nearly all spines can elongate, but also react differently under specific predator settings. Therefore, while spine plasticity evolved in direct response to a single predator type (fish), plasticity was maintained against invertebrate predators as long as fish were also present. Selective spine induction under the combined condition suggests that S. depressiusculum can successfully survive in environments with both predators. Therefore, phenotypic plasticity may be an effective strategy for habitat generalists and specialists. Although more studies are necessary to fully understand how selection shapes the evolution of phenotypic plasticity, we demonstrated that in dragonflies, presence or absence of a specific predator is not the only factor that determines plastic defence responses.

]]>
<![CDATA[Reappraisal of the systematics of Microglanis cottoides (Siluriformes, Pseudopimelodidae), a catfish from southern Brazil]]> https://www.researchpad.co/article/5b4a1936463d7e428027f896

The southern region of Brazil is characterized by high species diversity and endemism of freshwater fishes distributed across geographically isolated river basins. Microglanis cottoides has a widespread range across these river basins and occurs in sympatry with other endemic species of the genus (e.g. M. cibelae, M. eurystoma, and M. malabarbai). Herein we tested the monophyly of M. cottoides and presented for the first time information about the molecular phylogeny of species in the genus. The results suggest that M. cottoides currently forms a non-monophyletic group which includes populations endemic to the Uruguay River basin that are more closely related to M. malabarbai, and excludes M. cibelae, found to be nested within M. cottoides. Based on an integrative approach using morphological and molecular data, we propose M. cibelae as a junior synonym of M. cottoides, and the populations of the Uruguay River basin previously assigned to M. cottoides in fact belong to M. malabarbai. Our molecular phylogeny shows that M. cottoides is sister to M. parahybae, which is also a coastal species, and M. malabarbai is sister of M. garavelloi, both endemic to inland river basins. The time-calibrated phylogeny indicates that the separation between inland and the coastal clades occurred in the Tertiary period, and that the species within the coastal basins diverged in the Pliocene, which overlaps with the diversification times estimated for the two inland species as well. This pattern of diversification corroborates some previous studies with other fishes from the same region.

]]>
<![CDATA[Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus]]> https://www.researchpad.co/article/5989d9d1ab0ee8fa60b644dd

Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed.

]]>