ResearchPad - frogs https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice]]> https://www.researchpad.co/article/elastic_article_13831 Mice that carry a heterozygous, autism spectrum disorder-risk C456Y mutation in the NMDA receptor (NMDAR) subunit GluN2B show decreased protein levels, hippocampal NMDAR currents, and NMDAR-dependent long-term depression and have abnormal anxiolytic-like behavior. Early, but not late, treatment of the young mice with the NMDAR agonist D-cycloserine rescues these phenotypes.

]]>
<![CDATA[Digestibility of black soldier fly larvae (<i>Hermetia illucens</i>) fed to leopard geckos (<i>Eublepharis macularius</i>)]]> https://www.researchpad.co/article/elastic_article_7714 Black soldier fly (BSF) larvae have been marketed as an excellent choice for providing calcium to reptiles without the need of dusting or gut loading. However, previous studies have indicated that they have limited calcium digestibility and are deficient in fat soluble vitamins (A, D3, and E). In this feeding and digestibility trial, 24 adult male leopard geckos were fed one of three diets for 4 months: 1) whole, vitamin A gut loaded larvae; 2) needle pierced, vitamin A gut loaded larvae; or 3) whole, non-gut loaded larvae. Fecal output from the geckos was collected daily and apparent digestibility was calculated for dry matter, protein, fat, and minerals. There were no differences in digestibility coefficients among groups. Most nutrients were well digested by the leopard geckos when compared to previous studies, with the exception of calcium (digestibility co-efficient 43%), as the calcium-rich exoskeleton usually remained intact after passage through the GI tract. Biochemistry profiles revealed possible deficits occurring over time for calcium, sodium, and total protein. In regards to vitamin A digestibility, plasma and liver vitamin A concentrations were significantly higher in the supplemented groups (plasma- gut loaded groups: 33.38 ± 7.11 ng/ml, control group: 25.8 ± 6.72 ng/ml, t = 1.906, p = 0.04; liver- gut loaded groups: 28.67 ± 18.90 μg/g, control group: 14.13 ± 7.41 μg/g, t = 1.951, p = 0.03). While leopard geckos are able to digest most of the nutrients provided by BSF larvae, including those that have been gut loaded, more research needs to be performed to assess whether or not they provide adequate calcium in their non-supplemented form.

]]>
<![CDATA[Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) as an anti-fungal treatment against the amphibian chytrid fungus, Batrachochytrium dendrobatidis]]> https://www.researchpad.co/article/N5c2fa054-4262-4dfe-83a3-c606a06f5241

The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian’s skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal infections and stabilize populations of endangered amphibian species in captivity and in the wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itraconazole formulated for amphibian use has proved effective, but treatment involves short baths over seven to ten days, a process which is logistically challenging, stressful, and causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effective at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctorius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 μl/g), such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 μL/g), whereas, a lower dose (mean ± SE; 97.45 ± 3.52 μL/g) was not tolerated by Bd-infected D. tinctorius, where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. However, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42 ± 1.43 μL/g) reduced Bd growth, although the effect was lower than that obtained by daily doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itracanozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, however the effect depends on several parameters. Further optimization of dose and schedule are needed before BMP-NTf2 can be considered as a safe and effective alternative to more conventional antifungal agents, such as itraconazole.

]]>
<![CDATA[Human traffic and habitat complexity are strong predictors for the distribution of a declining amphibian]]> https://www.researchpad.co/article/5c8acce2d5eed0c484990222

Invasive species and habitat modification threaten California's native pond-breeding amphibians, including the federally threatened California Red-legged Frog (Rana draytonii). The relative contributions of invasive species, including the American Bullfrog (Lithobates catesbeianus), and of habitat changes to these declines are disputed. I conducted a field study over several years in central California to examine the presence/absence of these two species at 79 breeding ponds to determine the predictive role for occupancy of factors including vegetation, pond characteristics, and measures of human activity. I used a boosted regression tree approach to determine the relative value of each predictor variable. Increased measures of human activity, especially proximity to trails and roads, were the best predictors for the absence of California Red-legged Frogs and California Newts. Historical factors and habitat conditions were associated with the extent and spread of the American Bullfrog. The extent and complexity of aquatic macrophytes and pond surface area were good predictors for the presence of these and other amphibian species. Surprisingly, invasive species played a relatively small role in predicting pond occupancy by the native species. These findings can inform conservation and restoration efforts for California Red-legged Frogs, which apparently persist best in small vegetated ponds in areas of low human disturbance.

]]>
<![CDATA[Distinctive single-channel properties of α4β2-nicotinic acetylcholine receptor isoforms]]> https://www.researchpad.co/article/5c8acc7cd5eed0c48498f842

Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2)2β2- and LS-(α4β2)2α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces. However LS-(α4β2)2α4-nAChR also respond to higher concentrations of ACh, acting at a third α4(+)/(-)α4 subunit interface. To probe isoform functional differences further, HS- and LS-α4β2-nAChR were expressed in Xenopus laevis oocytes and single-channel responses were assessed using cell-attached patch-clamp. In the presence of a low ACh concentration, both isoforms produce low-bursting function. HS-(α4β2)2β2-nAChR exhibit a single conductance state, whereas LS-(α4β2)2α4-nAChR display two distinctive conductance states. A higher ACh concentration did not preferentially recruit either conductance state, but did result in increased LS-(α4β2)2α4-nAChR bursting and reduced closed times. Introduction of an α4(+)/(-)α4-interface loss-of-function α4W182A mutation abolished these changes, confirming this site’s role in mediating LS-(α4β2)2α4-nAChR responses. Small or large amplitude openings are highly-correlated within individual LS-(α4β2)2α4-nAChR bursts, suggesting that they arise from distinct intermediate states, each of which is stabilized by α4(+)/(-)α4 site ACh binding. These findings are consistent with α4(+)/(-)α4 subunit interface occupation resulting in allosteric potentiation of agonist actions at α4(+)/(-)β2 subunit interfaces, rather than independent induction of high conductance channel openings.

]]>
<![CDATA[GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance]]> https://www.researchpad.co/article/5c59fee7d5eed0c484135792

Glutamate-gated chloride channel receptors (GluClRs) mediate inhibitory neurotransmission at invertebrate synapses and are primary targets of parasites that impact drastically on agriculture and human health. Ivermectin (IVM) is a broad-spectrum pesticide that binds and potentiates GluClR activity. Resistance to IVM is a major economic and health concern, but the molecular and synaptic mechanisms of resistance are ill-defined. Here we focus on GluClRs of the agricultural endoparasite, Haemonchus contortus. We demonstrate that IVM potentiates inhibitory input by inducing a tonic current that plateaus over 15 minutes and by enhancing post-synaptic current peak amplitude and decay times. We further demonstrate that IVM greatly enhances the active durations of single receptors. These effects are greatly attenuated when endogenous IVM-insensitive subunits are incorporated into GluClRs, suggesting a mechanism of IVM resistance that does not affect glutamate sensitivity. We discovered functional groups of IVM that contribute to tuning its potency at different isoforms and show that the dominant mode of access of IVM is via the cell membrane to the receptor.

]]>
<![CDATA[The interplay between voluntary food intake, dietary carbohydrate-lipid ratio and nutrient metabolism in an amphibian, (Xenopus laevis)]]> https://www.researchpad.co/article/5c141e67d5eed0c484d26705

Digestion of food and metabolism of frogs are little studied at the moment, and such processes could be very particular in the case of amphibians, given their ectothermic and carnivorous nature which may lead them to use nutrients through specific biochemical pathways. In the present study, 24 adult Xenopus laevis (six replicates with two frogs per treatment) were randomly assigned to two diets with different carbohydrate:fat ratio (4.5:1 and 2.1:1), changing the dietary glucogenic and lipogenic proportions. Food intake (FI) per unit metabolic body weight (MBW) as well as macronutrient digestibility were calculated, and circulating blood acylcarnitines and amino acids measured, in order to evaluate the effect of the diet treatments. Results demonstrated that food intake regulated most of the changes in the parameters evaluated; significant differences were obtained in crude protein and fat digestibilities through the effect of FI/MBW (p<0.05), whereas diet treatment had a significant effect on the levels of malonyl-CoA. Food intake also significantly impacted malonyl, isovaleryl, hydroxyisovaleryl and long chain fatty acid concentrations; significant (p<0.05) interactions between those metabolites were detected owing to diet. The findings obtained suggest that food intake was the main factor controlling digestion and metabolism in X. laevis, with frogs preferring to utilise protein and fat as primary sources for energy production in the citric acid cycle, reflecting characteristics of a strict carnivore physiological model.

]]>
<![CDATA[A new method for modelling biological invasions from early spread data accounting for anthropogenic dispersal]]> https://www.researchpad.co/article/5c06f05bd5eed0c484c6d7d6

Biological invasions are one of the major causes of biodiversity loss worldwide. In spite of human aided (anthropogenic) dispersal being the key element in the spread of invasive species, no framework published so far accounts for its peculiar characteristics, such as very rapid dispersal and independence from the existing species distribution. We present a new method for modelling biological invasions using historical spatio-temporal records. This method first discriminates between data points of anthropogenic origin and those originating from natural dispersal, then estimates the natural dispersal kernel. We use the expectation-maximisation algorithm for the first step; we then use Ripley’s K-function as a spatial similarity metric to estimate the dispersal kernel. This is done accounting for habitat suitability and providing estimates of the inference precision. Tests on simulated data show good accuracy and precision for this method, even in the presence of challenging, but realistic, limitations of data in the invasion time series, such as gaps in the survey times and low number of records. We also provide a real case application of our method using the case of Litoria frogs in New Zealand. This method is widely applicable across the field of biological invasions, epidemics and climate change induced range shifts and provides a valuable contribution to the management of such issues. Functions to implement this methodology are made available as the R package Biolinv (https://cran.r-project.org/package=Biolinv).

]]>
<![CDATA[Requirement of the 3′-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development]]> https://www.researchpad.co/article/5b28b933463d7e146ff345d1

Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like) is one of the RBPs required for the sexual differentiation of primordial germ cells and for the progression of meiosis in ovulated oocytes. However, the involvement of DAZL in the development of follicular oocytes is still unknown. Here, we show that Dazl is translationally suppressed in a 3′-UTR-dependent manner in follicular oocytes, and this suppression is required for normal pre-implantation development. We found that suppression of DAZL occurred in postnatal oocytes concomitant with the formation of primordial follicles, whereas Dazl mRNA was continuously expressed throughout oocyte development, raising the possibility that DAZL is dispensable for the survival and growth of follicular oocytes. Indeed, follicular oocyte-specific knockout of Dazl resulted in the production of normal number of pups. On the other hand, genetically modified female mice that overexpress DAZL produced fewer numbers of pups than the control due to defective pre-implantation development. Our data suggest that post-transcriptional suppression of DAZL in oocytes is an important mechanism controlling gene expression in the development of functional oocytes.

]]>
<![CDATA[Xenopus Nkx6.3 Is a Neural Plate Border Specifier Required for Neural Crest Development]]> https://www.researchpad.co/article/5989da06ab0ee8fa60b75c39

In vertebrates, the neural plate border (NPB) is established by a group of transcription factors including Dlx3, Msx1 and Zic1. The crosstalk between these NPB specifiers governs the separation of the NPB region into placode and neural crest (NC) territories and also their further differentiation. Understanding the mechanisms of NPB formation and NC development is critical for our knowledge of related human diseases. Here we identified Nkx6.3, a transcription factor of the Nkx family, as a new NPB specifier required for neural crest development in Xenopus embryos. XNkx6.3 is expressed in the ectoderm of the neural plate border region at neurula stages, covering the epidermis, placode and neural crest territories, but not the neural plate. Inhibition of Nkx6.3 by dominant negative construct or specific morpholino leads to neural crest defects, while overexpression of Nkx6.3 induces ectopic neural crest in the anterior neural fold. In animal caps, Nkx6.3 alone is able to initiate the whole neural crest regulatory network and induces neural crest fate robustly. We showed that overexpression of Nkx6.3 affects multiple signaling pathways, creating a high-Wnt, low-BMP environment required for neural crest development. Gain- and loss-of-function of Nkx6.3 have compound effects on the expression of known NPB genes, which is largely opposite to that of Dlx3. Overexpression of Dlx3 blocks the NC inducing activity of Nkx6.3. The crosstalk between Nkx6.3, Dlx3 and Msx1 is likely crucial for proper NPB formation and neural crest development in Xenopus.

]]>
<![CDATA[A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series]]> https://www.researchpad.co/article/5989d9f2ab0ee8fa60b6ef3c

Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.

]]>
<![CDATA[Molecular and Morphological Study of Leaping Frogs (Anura, Ranixalidae) with Description of Two New Species]]> https://www.researchpad.co/article/5989daf2ab0ee8fa60bc1718

The monotypic anuran family Ranixalidae is endemic to India, with a predominant distribution in the Western Ghats, a region that is home to several unique amphibian lineages. It is also one of the three ancient anuran families that diversified on the Indian landmass long before several larger radiations of extant frogs in this region. In recent years, ranixalids have been subjected to DNA barcoding and systematic studies. Nearly half of the presently recognized species in this family have been described over the last three years, along with recognition of a new genus to accommodate three previously known members. Our surveys in the Western Ghats further suggest the presence of undescribed diversity in this group, thereby increasing former diversity estimates. Based on rapid genetic identification using a mitochondrial gene, followed by phylogenetic analyses with an additional nuclear gene and detailed morphological studies including examination of museum specimens, new collections, and available literature, here we describe two new species belonging to the genus Indirana from the Western Ghats states of Karnataka and Kerala. We also provide new genetic and morphological data along with confirmed distribution records for all the species known prior to this study. This updated systematic revision of family Ranixalidae will facilitate future studies and provide vital information for conservation assessment of these relic frogs.

]]>
<![CDATA[Defining Synphenotype Groups in Xenopus tropicalis by Use of Antisense Morpholino Oligonucleotides]]> https://www.researchpad.co/article/5989da1cab0ee8fa60b7d2a1

To identify novel genes involved in early development, and as proof-of-principle of a large-scale reverse genetics approach in a vertebrate embryo, we have carried out an antisense morpholino oligonucleotide (MO) screen in Xenopus tropicalis, in the course of which we have targeted 202 genes expressed during gastrula stages. MOs were designed to complement sequence between −80 and +25 bases of the initiating AUG codons of the target mRNAs, and the specificities of many were tested by (i) designing different non-overlapping MOs directed against the same mRNA, (ii) injecting MOs differing in five bases, and (iii) performing “rescue” experiments. About 65% of the MOs caused X. tropicalis embryos to develop abnormally (59% of those targeted against novel genes), and we have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes and that may function in the same developmental pathways. Analysis of the expression patterns of the 202 genes indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into early vertebrate development and paves the way for a more comprehensive MO-based analysis of gene function in X. tropicalis.

]]>
<![CDATA[Circadian Genes, xBmal1 and xNocturnin, Modulate the Timing and Differentiation of Somites in Xenopus laevis]]> https://www.researchpad.co/article/5989dae6ab0ee8fa60bbdb1a

We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin) are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino) and overexpression (mRNA) of xBMAL1 protein (bHLH transcription factor) or xNOCTURNIN protein (deadenylase) on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001). These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05). We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002), while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively). We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.

]]>
<![CDATA[Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be03ab

Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.

]]>
<![CDATA[Arginine and Lysine Transporters Are Essential for Trypanosoma brucei]]> https://www.researchpad.co/article/5989d9d2ab0ee8fa60b64b44

For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.

]]>
<![CDATA[The Principal Forces of Oocyte Polarity Are Evolutionary Conserved but May Not Affect the Contribution of the First Two Blastomeres to the Blastocyst Development in Mammals]]> https://www.researchpad.co/article/5989dad4ab0ee8fa60bb748d

Oocyte polarity and embryonic patterning are well-established features of development in lower species. Whether a similar form of pre-patterning exists in mammals is currently under hot debate in mice. This study investigated this issue for the first time in ovine as a large mammal model. Microsurgical trisection of unfertilized MII-oocytes revealed that cortical cytoplasm around spindle (S) contained significant amounts of total maternal mRNAs and proteins compared to matched cytoplast hemispheres that were located either near (NS) or far (FS) -to-spindle. RT-qPCR provided striking examples of maternal mRNA localized to subcellular substructures S (NPM2, GMNN, H19, PCAF, DNMT3A, DNMT1, and STELLA), NS (SOX2, NANOG, POU5F1, and TET1), and FS (GCN) of MII oocyte. Immunoblotting revealed that specific maternal proteins DNMT3A and NANOG were asymmetrically enriched in MII-spindle-half of the oocytes. Topological analysis of sperm entry point (SEP) revealed that sperm preferentially entered via the MII-spindle-half of the oocytes. Even though, the topological position of first cleavage plane with regard to SEP was quite stochastic. Spatial comparison of lipid content revealed symmetrical distribution of lipids between 2-cell blastomeres. Lineage tracing using Dil, a fluorescent dye, revealed that while the progeny of leading blastomere of 2-cell embryos contributed to more cells in the developed blastocysts compared to lagging counterpart, the contributions of leading and lagging blastomeres to the embryonic-abembryonic parts of the developed blastocysts were almost unbiased. And finally, separated sister blastomeres of 2-cell embryos had an overall similar probability to arrest at any stage before the blastocyst (2-cell, 4-cell, 8-cell, and morula) or to achieve the blastocyst stage. It was concluded that the localization of maternal mRNAs and proteins at the spindle are evolutionarily conserved between mammals unfertilized ovine oocyte could be considered polar with respect to the spatial regionalization of maternal transcripts and proteins. Even though, the principal forces of this definitive oocyte polarity may not persist during embryonic cleavages.

]]>
<![CDATA[Participation of androgen and its receptor in sex determination of an amphibian species]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0312

Introduction

In the Japanese frog Rana (R.) rugosa the androgen receptor (AR) gene on the W chromosome (W-AR) is barely expressed. Previously we showed that incomplete female-to-male sex-reversal occurred in Z-AR transgenic female frogs. To date, however, there is no report showing that AR with androgens can determine genetically programed male sex fate in any vertebrate species. Here, we examined whether AR together with androgens functions as a sex determinant in an amphibian species.

Methods

To examine whether complete female-to-male sex-reversal occurs in R. rugosa frogs, we produced AR-transgenic (Tg) and -knockdown (KD) female R. rugosa frogs by the I-SceI meganuclease-mediated gene trap and CRISPR/Cas9 system, respectively. AR-Tg and -KD tadpoles were reared in water containing testosterone (T) at 0 to 7.1 ng/ml. Frozen sections were prepared from the gonads of metamorphosed frogs and immunostained for laminin, Vasa, Pat1a, CYP17 and AR. We also employed PCR analysis to examine Dmrt1, Pat1a and CYP17 expression in the gonads of KD and placebo-KD female frogs.

Results

Complete female-to-male sex-reversal occurred in the AR-Tg ZW female frogs when a low dosage of T was supplied in the rearing water of tadpoles. However, no sex-reversal was observed in AR-KD ZW female frogs when the gonads were treated with dosages of T high enough to induce complete female-to-male sex-reversal even in wild type frogs.

Discussion

These results suggest that AR with its androgen ligand functions as a male sex-determinant in the ZW type R. rugosa frogs.

]]>
<![CDATA[Ligand Binding at the 4-4 Agonist-Binding Site of the 42 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State]]> https://www.researchpad.co/article/5989da98ab0ee8fa60ba2aa8

The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors.

]]>
<![CDATA[Inhibition of Cardiac Kir Current (IK1) by Protein Kinase C Critically Depends on PKCβ and Kir2.2]]> https://www.researchpad.co/article/5989db4bab0ee8fa60bda490

Background

Cardiac inwardly rectifying Kir current (IK1) mediates terminal repolarisation and is critical for the stabilization of the diastolic membrane potential. Its predominant molecular basis in mammalian ventricle is heterotetrameric assembly of Kir2.1 and Kir2.2 channel subunits. It has been shown that PKC inhibition of IK1 promotes focal ventricular ectopy. However, the underlying molecular mechanism has not been fully elucidated to date.

Methods and Results

In the Xenopus oocyte expression system, we observed a pronounced PKC-induced inhibition of Kir2.2 but not Kir2.1 currents. The PKC regulation of Kir2.2 could be reproduced by an activator of conventional PKC isoforms and antagonized by pharmacological inhibition of PKCβ. In isolated ventricular cardiomyocytes (rat, mouse), pharmacological activation of conventional PKC isoforms induced a pronounced inhibition of IK1. The PKC effect in rat ventricular cardiomyocytes was markedly attenuated following co-application of a small molecule inhibitor of PKCβ. Underlining the critical role of PKCβ, the PKC-induced inhibition of IK1 was absent in homozygous PKCβ knockout-mice. After heterologous expression of Kir2.1-Kir2.2 concatemers in Xenopus oocytes, heteromeric Kir2.1/Kir2.2 currents were also inhibited following activation of PKC.

Conclusion

We conclude that inhibition of cardiac IK1 by PKC critically depends on the PKCβ isoform and Kir2.2 subunits. This regulation represents a potential novel target for the antiarrhythmic therapy of focal ventricular arrhythmias.

]]>