ResearchPad - fruit-crops https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype by environment interaction and selection of promising genotypes]]> https://www.researchpad.co/article/elastic_article_14554 Breeding for yield and fruit quality traits in passion fruits is complex due to the polygenic nature of these traits and the existence of genetic correlations among them. Therefore, studies focused on crop management practices and breeding using modern quantitative genetic approaches are still needed, especially for Passiflora alata, an understudied crop, popularly known as the sweet passion fruit. It is highly appreciated for its typical aroma and flavor characteristics. In this study, we aimed to reevaluate 30 genotypes previously selected for fruit quality from a 100 full-sib sweet passion fruit progeny in three environments, with a view to estimating the heritability and genetic correlations, and investigating the GEI and response to selection for nine fruit traits (weight, diameter and length of the fruit; thickness and weight of skin; weight and yield of fruit pulp; soluble solids, and yield). Pairwise genetic correlations among the fruit traits showed mostly intermediate to high values, especially those associated with fruit size and shape. Different genotype rankings were obtained regarding the predicted genetic values of weight of skin, thickness of skin and weight of pulp in each environment. Finally, we used a multiplicative selection index to select simultaneously for weight of pulp and against fruit skin thickness and weight. The response to selection was positive for all traits except soluble solids, and the 20% superior (six) genotypes were ranked. Based on the assumption that incompatibility mechanisms exist in P. alata, the selected genotypes were intercrossed in a complete diallel mating scheme. It is worth noting that all genotypes produced fruits, which is essential to guarantee yields in commercial orchards.

]]>
<![CDATA[Comparison of transcriptional expression patterns of phenols and carotenoids in ‘Kyoho’ grapes under a two-crop-a-year cultivation system]]> https://www.researchpad.co/article/5c40f7ded5eed0c484386b3a

To fully utilize the characteristic climatic conditions in the southern region of China, a two-crop-a-year cultivation system technique for ‘Kyoho’ grape was developed during the past decade. After summer harvest in June, appropriate pruning and chemical treatments promote flowering and fruiting, which enables a second harvest in late December. Due to climatic differences between the two crop growing seasons, grape phenol and carotenoid metabolism differ greatly. The reported study analyzed the transcriptome of the carotenoid and phenylpropanoid/flavonoid pathways in grapes at four different stages during the two growing seasons. Compared with those in summer grapes, expression levels of the majority of genes involved in the carotenoid metabolic pathway in winter grapes were generally upregulated. This result was associated with lower rainfall and much more abundant sunlight during the second growing season. On the other hand, summer cropping strongly triggered the expression of upstream genes in the phenylpropanoid/flavonoid pathway at E-L 33 and E-L 35. Transcript levels of flavonoid 3’,5’-hydroxylase (F3’5’H), flavonoid 3’-hydroxylase (F3’H), flavonoid 3-hydroxylase (F3H) and glutathione S-transferase (GST) were upregulated in winter grapes at the mature stage. Together, these results might indicate that more flavonoids would be synthesized in ripe winter grapes during the mature stage of the second crop under much drier conditions, longer sunlight hours and lower temperature. These data provide a theoretical foundation for the secondary metabolism of berries grown under two-crop-a-year cultivation systems.

]]>
<![CDATA[Using household survey data to identify large-scale food security patterns across Uganda]]> https://www.researchpad.co/article/5c1c0b05d5eed0c484427200

To target food security interventions for smallholder households, decision makers need large-scale information, such as maps on poverty, food security and key livelihood activities. Such information is often based on expert knowledge or aggregated data, despite the fact that food security and poverty are driven largely by processes at the household level. At present, it is unclear if and how household level information can contribute to the spatial prediction of such welfare indicators or to what extent local variability is ignored by current mapping efforts. A combination of geo-referenced household level information with spatially continuous information is an underused approach to quantify local and large-scale variation, while it can provide a direct estimate of the variability of welfare indicators at the most relevant scale. We applied a stepwise regression kriging procedure to translate point information to spatially explicit patterns and create country-wide predictions with associated uncertainty estimates for indicators on food availability and related livelihood activities using household survey data from Uganda. With few exceptions, predictions of the indicators were weak, highlighting the difficulty in capturing variability at larger scale. Household explanatory variables identified little additional variation compared to environmental explanatory variables alone. Spatial predictability was strongest for indicators whose distribution was determined by environmental gradients. In contrast, indicators of crops that were more ubiquitously present across agroecological zones showed large local variation, which often overruled large-scale patterns.

Our procedure adds to existing approaches that often only show large-scale patterns by revealing that local variation in welfare is large. Interventions that aim to target the poor must recognise that diversity in livelihood activities for income generation within any given area often overrides the variability of livelihood activities between distant regions in the country.

]]>
<![CDATA[Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling]]> https://www.researchpad.co/article/5c0ed767d5eed0c484f14097

This study reports the construction of high density linkage maps of Japanese plum (Prunus salicina Lindl.) using single nucleotide polymorphism markers (SNPs), obtained with a GBS strategy. The mapping population (An x Au) was obtained by crossing cv. “Angeleno” (An) as maternal line and cv. “Aurora” (Au) as the pollen donor. A total of 49,826 SNPs were identified using the peach genome V2.1 as a reference. Then a stringent filtering was carried out, which revealed 1,441 high quality SNPs in 137 An x Au offspring, which were mapped in eight linkage groups. Finally, the consensus map was built using 732 SNPs which spanned 617 cM with an average of 0.96 cM between adjacent markers. The majority of the SNPs were distributed in the intragenic region in all the linkage groups. Considering all linkage groups together, 85.6% of the SNPs were located in intragenic regions and only 14.4% were located in intergenic regions. The genetic linkage analysis was able to co-localize two to three SNPs over 37 putative orthologous genes in eight linkage groups in the Japanese plum map. These results indicate a high level of synteny and collinearity between Japanese plum and peach genomes.

]]>
<![CDATA[Elucidating the contribution of wild related species on autochthonous pear germplasm: A case study from Mount Etna]]> https://www.researchpad.co/article/5b28b3e7463d7e1292999385

The pear (genus Pyrus) is one of the most ancient and widely cultivated tree fruit crops in temperate climates. The Mount Etna area claims a large number of pear varieties differentiated due to a long history of cultivation and environmental variability, making this area particularly suitable for genetic studies. Ninety-five pear individuals were genotyped using the simple sequence repeat (SSR) methodology interrogating both the nuclear (nDNA) and chloroplast DNA (cpDNA) to combine an investigation of maternal inheritance of chloroplast SSRs (cpSSRs) with the high informativity of nuclear SSRs (nSSRs). The germplasm was selected ad hoc to include wild genotypes, local varieties, and national and international cultivated varieties. The objectives of this study were as follows: (i) estimate the level of differentiation within local varieties; (ii) elucidate the phylogenetic relationships between the cultivated genotypes and wild accessions; and (iii) estimate the potential genetic flow and the relationship among the germplasms in our analysis. Eight nSSRs detected a total of 136 alleles with an average minor allelic frequency and observed heterozygosity of 0.29 and 0.65, respectively, whereas cpSSRs allowed identification of eight haplotypes (S4 Table). These results shed light on the genetic relatedness between Italian varieties and wild genotypes. Among the wild species, compared with P. amygdaliformis, few P. pyraster genotypes exhibited higher genetic similarity to local pear varieties. Our analysis revealed the presence of genetic stratification with a ‘wild’ subpopulation characterizing the genetic makeup of wild species and the international cultivated varieties exhibiting the predominance of the ‘cultivated’ subpopulation.

]]>
<![CDATA[CRISPR/Cas9-mediated targeted mutagenesis in grape]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdfeca

RNA-guided genome editing using the CRISPR/Cas9 CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has been applied successfully in several plant species. However, to date, there are few reports on the use of any of the current genome editing approaches in grape—an important fruit crop with a large market not only for table grapes but also for wine. Here, we report successful targeted mutagenesis in grape (Vitis vinifera L., cv. Neo Muscat) using the CRISPR/Cas9 system. When a Cas9 expression construct was transformed to embryonic calli along with a synthetic sgRNA expression construct targeting the Vitis vinifera phytoene desaturase (VvPDS) gene, regenerated plants with albino leaves were obtained. DNA sequencing confirmed that the VvPDS gene was mutated at the target site in regenerated grape plants. Interestingly, the ratio of mutated cells was higher in lower, older, leaves compared to that in newly appearing upper leaves. This result might suggest either that the proportion of targeted mutagenized cells is higher in older leaves due to the repeated induction of DNA double strand breaks (DSBs), or that the efficiency of precise DSBs repair in cells of old grape leaves is decreased.

]]>
<![CDATA[Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe44

Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.

]]>
<![CDATA[Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbbb6

Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana.

]]>
<![CDATA[Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf7bf

Harvest maturity is closely related to peach fruit quality and has a very important effect on the fresh fruit market. Unfortunately, at present, it is difficult to determine the maturity level of peach fruits by artificial methods. The objectives of this study were to develop quadratic polynomial regression models using near-infrared spectroscopy that could determine the peel color difference, fruit firmness, soluble solids content (SSC), soluble sugar, organic acid components, and their relationships with the absorbance of chlorophyll (index of absorbance difference, IAD) in late maturing ‘Xiahui 8’ peach and ‘Xiaguang’ nectarine fruits. The analysis was based on data for fruits at veraison, fruits at harvesting maturity, and all fruits. The results showed that firmness has the highest correlation coefficient with IAD. Prediction models for fruit maturity were established between firmness and the IAD of the two cultivars using the quadratic polynomial regression method. Further variance analysis on the one degree term and quadratic term of each equation showed that every partial regression coefficient reached a significant or extremely significant level. No significant difference was observed between estimated and observed values after regression prediction. The regression equations seem to fit well. Other peach and nectarine varieties were used to test the feasibility of maturity prediction by this method, and it was found that maturity was successfully predicted in all the samples. The result indicated that the IAD can be used as an index to predict peach fruit maturity.

]]>
<![CDATA[Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species]]> https://www.researchpad.co/article/5989db5eab0ee8fa60be0b76

Cultivated blueberry (Vaccinium corymbosum, Vaccinium angustifolium, Vaccinium darrowii, and Vaccinium virgatum) is an economically important fruit crop native to North America and a member of the Ericaceae family. Several species in the Ericaceae family including cranberry, lignonberry, bilberry, and neotropical blueberry species have been shown to produce iridoids, a class of pharmacologically important compounds present in over 15 plant families demonstrated to have a wide range of biological activities in humans including anti-cancer, anti-bacterial, and anti-inflammatory. While the antioxidant capacity of cultivated blueberry has been well studied, surveys of iridoid production in blueberry have been restricted to fruit of a very limited number of accessions of V. corymbosum, V. angustifolium and V. virgatum; none of these analyses have detected iridoids. To provide a broader survey of iridoid biosynthesis in cultivated blueberry, we constructed a panel of 84 accessions representing a wide range of cultivated market classes, as well as wild blueberry species, and surveyed these for the presence of iridoids. We identified the iridoid glycoside monotropein in fruits and leaves of all 13 wild Vaccinium species, yet only five of the 71 cultivars. Monotropein positive cultivars all had recent introgressions from wild species, suggesting that iridoid production can be targeted through breeding efforts that incorporate wild germplasm. A series of diverse developmental tissues was also surveyed in the diversity panel, demonstrating a wide range in iridoid content across tissues. Taken together, this data provides the foundation to dissect the molecular and genetic basis of iridoid production in blueberry.

]]>
<![CDATA[Land use history and population dynamics of free-standing figs in a maturing forest]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdffb9

Figs (Ficus sp.) are often considered as keystone resources which strongly influence tropical forest ecosystems. We used long-term tree-census data to track the population dynamics of two abundant free-standing fig species, Ficus insipida and F. yoponensis, on Barro Colorado Island (BCI), a 15.6-km2 island in Lake Gatún, Panama. Vegetation cover on BCI consists of a mosaic of old growth (>400 years) and maturing (about 90–150 year old) secondary rainforest. Locations and conditions of fig trees have been mapped and monitored on BCI for more than 35 years (1973–2011), with a focus on the Lutz Catchment area (25 ha). The original distribution of the fig trees shortly after the construction of the Panama Canal was derived from an aerial photograph from 1927 and was compared with previous land use and forest status. The distribution of both fig species (~850 trees) is restricted to secondary forest. Of the original 119 trees observed in Lutz Catchment in 1973, >70% of F. insipida and >90% of F. yoponensis had died by 2011. Observations in other areas on BCI support the trend of declining free-standing figs. We interpret the decline of these figs on BCI as a natural process within a maturing tropical lowland forest. Senescence of the fig trees appears to have been accelerated by severe droughts such as the strong El Niño event in the year 1982/83. Because figs form such an important food resource for frugivores, this shift in resource availability is likely to have cascading effects on frugivore populations.

]]>