ResearchPad - functional-magnetic-resonance-imaging https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H<sub>2</sub>[<sup>15</sup> O] PET—BOLD MRI activation study]]> https://www.researchpad.co/article/elastic_article_14749 Previous unimodal PET and fMRI studies in humans revealed a reproducible vestibular brain activation pattern, but with variations in its weighting and expansiveness. Hybrid studies minimizing methodological variations at baseline conditions are rare and still lacking for task-based designs. Thus, we applied for the first time hybrid 3T PET-MRI scanning (Siemens mMR) in healthy volunteers using galvanic vestibular stimulation (GVS) in healthy volunteers in order to directly compare H215O-PET and BOLD MRI responses. List mode PET acquisition started with the injection of 750 MBq H215O simultaneously to MRI EPI sequences. Group-level statistical parametric maps were generated for GVS vs. rest contrasts of PET, MR-onset (event-related), and MR-block. All contrasts showed a similar bilateral vestibular activation pattern with remarkable proximity of activation foci. Both BOLD contrasts gave more bilateral wide-spread activation clusters than PET; no area showed contradictory signal responses. PET still confirmed the right-hemispheric lateralization of the vestibular system, whereas BOLD-onset revealed only a tendency. The reciprocal inhibitory visual-vestibular interaction concept was confirmed by PET signal decreases in primary and secondary visual cortices, and BOLD-block decreases in secondary visual areas. In conclusion, MRI activation maps contained a mixture of CBF measured using H215O-PET and additional non-CBF effects, and the activation-deactivation pattern of the BOLD-block appears to be more similar to the H215O-PET than the BOLD-onset.

]]>
<![CDATA[Conservation laws by virtue of scale symmetries in neural systems]]> https://www.researchpad.co/article/elastic_article_14657 Considerations of the way in which a dynamical system changes under transformation of scale offer insight into its operational principles. Scale freeness is a paradigm that has been observed in a variety of physical and biological phenomena and describes a situation in which appropriately scaling the space and time coordinates of any evolution of the system yields another possible evolution. In the brain, scale freeness has drawn considerable attention, as it has been associated with optimal information transmission capabilities. Scale symmetry describes a special case of scale freeness, in which a system is perfectly unchanged under transformation of scale. Noether’s theorem tells us that in a system that possesses such a symmetry, an associated conservation law must also exist. Here we show that scale symmetry can be identified, and the related conserved quantities measured, in both simulations and real-world data. We achieve this by deriving a generalised equation of motion that leaves the action invariant under spatiotemporal scale transformations and using a modified version of Noether’s theorem to write the associated family of conservation laws. Our contribution allows for the first such statistical characterisation of the quantity that is conserved purely by virtue of scale symmetry.

]]>
<![CDATA[Functional magnetic resonance imaging of the trail-making test in older adults]]> https://www.researchpad.co/article/elastic_article_13819 The trail-making test (TMT) is a popular neuropsychological test, which is used extensively to measure cognitive impairment associated with neurodegenerative disorders in older adults. Behavioural performance on the TMT has been investigated in older populations, but there is limited research on task-related brain activity in older adults. The current study administered a naturalistic version of the TMT to a healthy older-aged population in an MRI environment using a novel, MRI-compatible tablet. Functional MRI was conducted during task completion, allowing characterization of the brain activity associated with the TMT. Performance on the TMT was evaluated using number of errors and seconds per completion of each link. Results are reported for 36 cognitively healthy older adults between the ages of 52 and 85. Task-related activation was observed in extensive regions of the bilateral frontal, parietal, temporal and occipital lobes as well as key motor areas. Increased age was associated with reduced brain activity and worse task performance. Specifically, older age was correlated with decreased task-related activity in the bilateral occipital, temporal and parietal lobes. These results suggest that healthy older aging significantly affects brain function during the TMT, which consequently may result in performance decrements. The current study reveals the brain activation patterns underlying TMT performance in a healthy older aging population, which functions as an important, clinically-relevant control to compare to pathological aging in future investigations.

]]>
<![CDATA[Resting state networks of the canine brain under sevoflurane anaesthesia]]> https://www.researchpad.co/article/N0f88adec-494f-4799-9601-5a30499e23df

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has become an established technique in humans and reliably determines several resting state networks (RSNs) simultaneously. Limited data exist about RSN in dogs. The aim of this study was to investigate the RSNs in 10 healthy beagle dogs using a 3 tesla MRI scanner and subsequently perform group-level independent component analysis (ICA) to identify functionally connected brain networks. Rs-fMRI sequences were performed under steady state sevoflurane inhalation anaesthesia. Anaesthetic depth was titrated to the minimum level needed for immobilisation and mechanical ventilation of the patient. This required a sevoflurane MAC between 0.8 to 1.2. Group-level ICA dimensionality of 20 components revealed distributed sensory, motor and higher-order networks in the dogs’ brain. We identified in total 7 RSNs (default mode, primary and higher order visual, auditory, two putative motor-somatosensory and one putative somatosensory), which are common to other mammals including humans. Identified RSN are remarkably similar to those identified in awake dogs. This study proves the feasibility of rs-fMRI in anesthetized dogs and describes several RSNs, which may set the basis for investigating pathophysiological characteristics of various canine brain diseases.

]]>
<![CDATA[A novel visual ranking system based on arterial spin labeling perfusion imaging for evaluating perfusion disturbance in patients with ischemic stroke]]> https://www.researchpad.co/article/N32085c18-73a0-407b-8668-9d011597efb2

We developed a visual ranking system by combining the parenchymal perfusion deficits (PPD) and hyperintense vessel signals (HVS) on arterial spin labeling (ASL) imaging. This study aimed to assess the performance of this ranking system by correlating with subtypes classified based on dynamic susceptibility contrast (DSC) imaging for evaluating the perfusion disturbance observed in patients with ischemic stroke. 32 patients with acute or subacute infarcts detected by DSC imaging were reviewed. Each patient’s brain was divided into 12 areas. ASL ranks were defined by the presence (+) or absence (-) of PPD/HVS as follows; I:–/–, II:–/+, III: +/+, and IV: +/–. DSC imaging findings were categorized based on cerebral blood flow (CBF) and time to peak (TTP) as normal (normal CBF/TTP), mismatched (normal CBF/delayed TTP), and matched (decreased CBF/delayed TTP). Two reviewers rated perfusion abnormalities in the total of 384 areas. The four ASL ranks correlated well with the DSC subtypes (Spearman’s r = 0.82). The performance of ASL ranking system was excellent as indicated by the area under the curve value of 0.94 using either matched or mismatched DSC subtype as the gold standard and 0.97 using only the matched DSC subtype as the gold standard. The two methods were in good-to-excellent agreement (maximum κ-values, 0.86). Inter-observer agreement was excellent (κ-value, 0.98). Although the number of patients was small and the number of dropouts was high, our proposed, ASL-based visual ranking system represented by PPD and HVS provides good, graded estimates of perfusion disturbance that agree well with those obtained by DSC perfusion imaging.

]]>
<![CDATA[Executive task-based brain function in children with type 1 diabetes: An observational study]]> https://www.researchpad.co/article/Nd7290b0a-e9f9-4731-9f28-e7228fa093e0

Background

Optimal glycemic control is particularly difficult to achieve in children and adolescents with type 1 diabetes (T1D), yet the influence of dysglycemia on the developing brain remains poorly understood.

Methods and findings

Using a large multi-site study framework, we investigated activation patterns using functional magnetic resonance imaging (fMRI) in 93 children with T1D (mean age 11.5 ± 1.8 years; 45.2% female) and 57 non-diabetic (control) children (mean age 11.8 ± 1.5 years; 50.9% female) as they performed an executive function paradigm, the go/no-go task. Children underwent scanning and cognitive and clinical assessment at 1 of 5 different sites. Group differences in activation occurring during the contrast of “no-go > go” were examined while controlling for age, sex, and scan site. Results indicated that, despite equivalent task performance between the 2 groups, children with T1D exhibited increased activation in executive control regions (e.g., dorsolateral prefrontal and supramarginal gyri; p = 0.010) and reduced suppression of activation in the posterior node of the default mode network (DMN; p = 0.006). Secondary analyses indicated associations between activation patterns and behavior and clinical disease course. Greater hyperactivation in executive control regions in the T1D group was correlated with improved task performance (as indexed by shorter response times to correct “go” trials; r = −0.36, 95% CI −0.53 to −0.16, p < 0.001) and with better parent-reported measures of executive functioning (r values < −0.29, 95% CIs −0.47 to −0.08, p-values < 0.007). Increased deficits in deactivation of the posterior DMN in the T1D group were correlated with an earlier age of T1D onset (r = −0.22, 95% CI −0.41 to −0.02, p = 0.033). Finally, exploratory analyses indicated that among children with T1D (but not control children), more severe impairments in deactivation of the DMN were associated with greater increases in hyperactivation of executive control regions (T1D: r = 0.284, 95% CI 0.08 to 0.46, p = 0.006; control: r = 0.108, 95% CI −0.16 to 0.36, p = 0.423). A limitation to this study involves glycemic effects on brain function; because blood glucose was not clamped prior to or during scanning, future studies are needed to assess the influence of acute versus chronic dysglycemia on our reported findings. In addition, the mechanisms underlying T1D-associated alterations in activation are unknown.

Conclusions

These data indicate that increased recruitment of executive control areas in pediatric T1D may act to offset diabetes-related impairments in the DMN, ultimately facilitating cognitive and behavioral performance levels that are equivalent to that of non-diabetic controls. Future studies that examine whether these patterns change as a function of improved glycemic control are warranted.

]]>
<![CDATA[Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge]]> https://www.researchpad.co/article/5c6dca21d5eed0c48452a80d

The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.

]]>
<![CDATA[Enhancing activation in the right temporoparietal junction using theta-burst stimulation: Disambiguating between two hypotheses of top-down control of behavioral mimicry]]> https://www.researchpad.co/article/5c57e659d5eed0c484ef2cf5

Whereas previous research has focused on the role of the rTPJ when consciously inhibiting mimicry, we test the role of the rTPJ on mimicry within a social interaction, during which mimicking occurs nonconsciously. We wanted to determine whether higher rTPJ activation always inhibits the tendency to imitate (regardless of the context) or whether it facilitates mimicry during social interactions (when mimicking is an adaptive response). Participants received either active or sham intermittent theta-burst stimulation (iTBS: a type of stimulation that increases cortical activation) to the rTPJ. Next, we measured how much participants mimicked the hair and face touching of another person. Participants in the active stimulation condition engaged in significantly less mimicry than those in the sham stimulation condition. This finding suggests that even in a context in which mimicking is adaptive, rTPJ inhibits mimicry rather than facilitating it, supporting the hypothesis that rTPJ enhances representations of self over other regardless of the goals within a given context.

]]>
<![CDATA[Resting-state functional MRI demonstrates brain network reorganization in neuromyelitis optica spectrum disorder (NMOSD)]]> https://www.researchpad.co/article/5c59fedad5eed0c484135723

Background

The relation between brain functional connectivity of patients with neuromyelitis optica spectrum disorder (NMOSD) and the degree of disability remains unclear.

Objective

Compare brain functional connectivity of patients with NMOSD to healthy subjects in resting-state functional MRI (rs-fMRI).

Methods

We compared the rs-fMRI connectivity in 12 NMOSD patients with 20 healthy subjects matched for age and sex. Graph theory analysis was used to quantify the role of each node using a set of metrics: degree, global efficiency, clustering and modularity. To summarize the abnormal connectivity profile of brain regions in patients compared to healthy subjects, we defined a hub disruption index κ.

Results

Concerning the global organization of networks in NMOSD, a small-world topology was preserved without significant modification concerning all average metrics. However, visual networks and the sensorimotor network showed decreased connectivity with high interindividual variability. The hub disruption index κ was correlated to the Expanded Disability Status Scale (EDSS).

Conclusion

These results demonstrate a correlation between disability according to the EDSS and neuronal reorganization using the rs-fMRI graph methodology. The conservation of a normal global topological structure despite local modifications in functional connectivity seems to show brain plasticity in response to the disability.

]]>
<![CDATA[Implicit measurement of emotional experience and its dynamics]]> https://www.researchpad.co/article/5c63394ad5eed0c484ae6422

Although many studies revealed that emotions and their dynamics have a profound impact on cognition and behavior, it has proven difficult to unobtrusively measure emotions. In the current study, our objective was to distinguish different experiences elicited by audiovisual stimuli designed to evoke particularly happy, sad, fear and disgust emotions, using electroencephalography (EEG) and a multivariate approach. We show that we were able to classify these emotional experiences well above chance level. Importantly, we retained all the information (frequency and topography) present in the data. This allowed us to interpret the differences between emotional experiences in terms of component psychological processes such as attention and arousal that are known to be associated with the observed activation patterns. In addition, we illustrate how this method of classifying emotional experiences can be applied on a moment-by-moment basis in order to track dynamic changes in the emotional response over time. The application of our approach may be of value in many contexts in which the experience of a given stimulus or situation changes over time, ranging from clinical to consumption settings.

]]>
<![CDATA[Relief from incidental fear evokes exuberant risk taking]]> https://www.researchpad.co/article/5c536aacd5eed0c484a477a8

Incidental emotions are defined as feelings that are unrelated to a decision task at hand and thereby not normatively relevant for making choices. The precise influence and formal theoretical implications of incidental emotions regarding financial risk taking are still largely unclear. An effect of incidental emotion on decision-making would challenge the main extant formal theoretical economic models because such models do not allow for an effect of incidental emotions. As financial risk taking is pervasive in modern economies, the role of incidental emotions is an important issue. The goal of this experimental study is threefold. First, we examine the impact of incidental fear on the choice between a sure and a risky monetary option. A well-validated method of fear induction, using electric shocks, is employed for that purpose. Based on emotion studies we hypothesize less risk taking under fear and more risk taking when relieved of fear. Our second goal is to investigate the relative performance of the main existing formal theoretical economic models (based on Expected Utility Theory, Prospect Theory, or the Mean-Variance model) in explaining the behavioral data. We also investigate how these models can be adjusted to accommodate any observed influence of incidental emotion. For that reason, we first theoretically model the potential pathways of incidental fear (and the relief thereof) via the valuation of the choice option rewards or risk-assessment. We then estimate the relevant parameters allowing for both additive as well as interactive effects. Our third and final goal is to explore the neural basis of any observed influence of incidental emotions on decision-making by means of a model-based fMRI analysis, using the findings of existing neuroeconomic studies as the basis for our hypotheses. Our results indicate that the relief of fear can give a substantial boost to financial risk taking (suggestive of exuberance). This impact is best captured by Prospect Theory if we allow for an increase in participants’ valuation of option outcomes when relieved of fear. Moreover, this impact is manifested at the neural level by the activity of the ventromedial prefrontal cortex (vmPFC), a brain area widely regarded as being central for valuation.

]]>
<![CDATA[Illusory face detection in pure noise images: The role of interindividual variability in fMRI activation patterns]]> https://www.researchpad.co/article/5c466591d5eed0c484519d0d

Illusory face detection tasks can be used to study the neural correlates of top-down influences on face perception. In a typical functional magnetic resonance imaging (fMRI) study design, subjects are presented with pure noise images, but are told that half of the stimuli contain a face. The illusory face perception network is assessed by comparing blood oxygenation level dependent (BOLD) responses to images in which a face has been detected against BOLD activity related to images in which no face has been detected. In the present study, we highlight the existence of strong interindividual differences of BOLD activation patterns associated with illusory face perception. In the core system of face perception, 4 of 9 subjects had highly significant (p<0.05, corrected for multiple comparisons) activity in the bilateral occipital face area (OFA) and fusiform face area (FFA). In contrast, 5 of 9 subjects did not show any activity in these regions, even at statistical thresholds as liberal as p = 0.05, uncorrected. At the group level, this variability is reflected by non-significant activity in all regions of the core system. We argue that these differences might be related to individual differences in task execution: only some participants really detected faces in the noise images, while the other subjects simply responded in the desired way. This has several implications for future studies on illusory face detection. First, future studies should not only analyze results at the group level, but also for single subjects. Second, subjects should be explicitly queried after the fMRI experiment about whether they really detected faces or not. Third, if possible, not only the overt response of the subject, but also additional parameters that might indicate the perception of a noise stimulus as face should be collected (e.g., behavioral classification images).

]]>
<![CDATA[Large-scale network interactions supporting item-context memory formation]]> https://www.researchpad.co/article/5c40f760d5eed0c484385fe2

Episodic memory is thought to involve functional interactions of large-scale brain networks that dynamically reconfigure depending on task demands. Although the hippocampus and closely related structures have been implicated, little is known regarding how large-scale and distributed networks support different memory formation demands. We investigated patterns of interactions among distributed networks while human individuals formed item-context memories for two stimulus categories. Subjects studied object-scene and object-location associations in different fMRI sessions. Stimulus-responsive brain regions were organized based on their fMRI interconnectivity into networks and modules using probabilistic module-detection algorithms to maximize measurement of individual differences in modular structure. Although there was a great deal of consistency in the modular structure between object-scene and object-location memory formation, there were also significant differences. Interactions among functional modules predicted later memory accuracy, explaining substantial portions of variability in memory formation success. Increased interactivity of modules associated with internal thought and anti-correlation of these modules with those related to stimulus-evoked processing robustly predicted object-scene memory, whereas decreased interactivity of stimulus-evoked processing modules predicted object-location memory. Assessment of individual differences in network organization therefore allowed identification of distinct patterns of functional interactions that robustly predicted memory formation. This highlights large-scale brain network interactions for memory formation and indicates that although networks are largely robust to task demands, reconfiguration nonetheless occurs to support distinct memory formation demands.

]]>
<![CDATA[Interactive effects of OXTR and GAD1 on envy-associated behaviors and neural responses]]> https://www.researchpad.co/article/5c4243a2d5eed0c4845e0913

Inequity aversion (negative feelings induced by outcome differences between the self and other) plays a key role in human social behaviors. The neurotransmitters oxytocin and GABA have been implicated in neural responses to inequity. However, it remains poorly understood not only how individual genetic factors related to oxytocin and GABA affect the neural mechanisms behind inequity aversion, but also how these genes interact. To address these issues, we examined relationships between genotypes, behavioral decisions and brain activities during the ultimatum game. We identified interactive effects between the polymorphisms of the oxytocin receptor gene (OXTR) and glutamate decarboxylase 1 gene for GABA synthesis (GAD1) on envy aversion (i.e., disadvantageous inequity aversion) and on envy-induced activity in the dorsal ACC (dACC). Thus, our integrated approach suggested interactive genetic effects between OXTR and GAD1 on envy aversion and the underlying neural substrates.

]]>
<![CDATA[Embedded word priming elicits enhanced fMRI responses in the visual word form area]]> https://www.researchpad.co/article/5c40f799d5eed0c484386454

Lexical embedding is common in all languages and elicits mutual orthographic interference between an embedded word and its carrier. The neural basis of such interference remains unknown. We employed a novel fMRI prime-target embedded word paradigm to test for involvement of a visual word form area (VWFA) in left ventral occipitotemporal cortex in co-activation of embedded words and their carriers. Based on the results of related fMRI studies we predicted either enhancement or suppression of fMRI responses to embedded words initially viewed as primes, and repeated in the context of target carrier words. Our results clearly showed enhancement of fMRI responses in the VWFA to embedded-carrier word pairs as compared to unrelated prime-target pairs. In contrast to non-visual language-related areas (e.g., left inferior frontal gyrus), enhanced fMRI responses did not occur in the VWFA when embedded-carrier word pairs were restricted to the left visual hemifield. Our finding of fMRI enhancement in the VWFA is novel evidence of its involvement in representational rivalry between orthographically similar words, and the co-activation of embedded words and their carriers.

]]>
<![CDATA[A functional MRI investigation of crossmodal interference in an audiovisual Stroop task]]> https://www.researchpad.co/article/5c478c85d5eed0c484bd2d7f

The visual color-word Stroop task is widely used in clinical and research settings as a measure of cognitive control. Numerous neuroimaging studies have used color-word Stroop tasks to investigate the neural resources supporting cognitive control, but to our knowledge all have used unimodal (typically visual) Stroop paradigms. Thus, it is possible that this classic measure of cognitive control is not capturing the resources involved in multisensory cognitive control. The audiovisual integration and crossmodal correspondence literatures identify regions sensitive to congruency of auditory and visual stimuli, but it is unclear how these regions relate to the unimodal cognitive control literature. In this study we aimed to identify brain regions engaged by crossmodal cognitive control during an audiovisual color-word Stroop task, and how they relate to previous unimodal Stroop and audiovisual integration findings. First, we replicated previous behavioral audiovisual Stroop findings in an fMRI-adapted audiovisual Stroop paradigm: incongruent visual information increased reaction time towards an auditory stimulus and congruent visual information decreased reaction time. Second, we investigated the brain regions supporting cognitive control during an audiovisual color-word Stroop task using fMRI. Similar to unimodal cognitive control tasks, a left superior parietal region exhibited an interference effect of visual information on the auditory stimulus. This superior parietal region was also identified using a standard audiovisual integration localizing procedure, indicating that audiovisual integration resources are sensitive to cognitive control demands. Facilitation of the auditory stimulus by congruent visual information was found in posterior superior temporal cortex, including in the posterior STS which has been found to support audiovisual integration. The dorsal anterior cingulate cortex, often implicated in unimodal Stroop tasks, was not modulated by the audiovisual Stroop task. Overall the findings indicate that an audiovisual color-word Stroop task engages overlapping resources with audiovisual integration and overlapping but distinct resources compared to unimodal Stroop tasks.

]]>
<![CDATA[Scene complexity modulates degree of feedback activity during object detection in natural scenes]]> https://www.researchpad.co/article/5c33c3a1d5eed0c48459e504

Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

]]>
<![CDATA[Altered reward processing following an acute social stressor in adolescents]]> https://www.researchpad.co/article/5c390bd4d5eed0c48491e907

Altered reward processing is a transdiagnostic factor implicated in a wide range of psychiatric disorders. While prior animal and adult research has shown that stress contributes to reward dysfunction, less is known about how stress impacts reward processing in youth. Towards addressing this gap, the present study probed neural activation associated with reward processing following an acute stressor. Healthy adolescents (n = 40) completed a clinical assessment, and fMRI data were acquired while participants completed a monetary guessing task under a no-stress condition and then under a stress condition. Based on prior literature, analyses focused on a priori defined regions-of-interest, specifically the striatum (win trials) and dorsal anterior cingulate cortex [dACC] and insula (loss trials). Two main findings emerged. First, reward-related neural activation (i.e., striatum) was blunted in the stress relative to the no-stress condition. Second, the stress condition also contributed to blunted neural response following reward in loss-related regions (i.e., dACC, anterior insula); however, there were no changes in loss sensitivity. These results highlight the importance of conceptualizing neural vulnerability within the presence of stress, as this may clarify risk for mental disorders during a critical period of development.

]]>
<![CDATA[A conceptual space for EEG-based brain-computer interfaces]]> https://www.researchpad.co/article/5c37b798d5eed0c4844905bd

Brain-Computer Interfaces (BCIs) have become more and more popular these last years. Researchers use this technology for several types of applications, including attention and workload measures but also for the direct control of objects by the means of BCIs. In this work we present a first, multidimensional feature space for EEG-based BCI applications to help practitioners to characterize, compare and design systems, which use EEG-based BCIs. Our feature space contains 4 axes and 9 sub-axes and consists of 41 options in total as well as their different combinations. We presented the axes of our feature space and we positioned our feature space regarding the existing BCI and HCI taxonomies and we showed how our work integrates the past works, and/or complements them.

]]>
<![CDATA[Putting out the blaze: The neural mechanisms underlying sexual inhibition]]> https://www.researchpad.co/article/5c3667e6d5eed0c4841a686c

The successful inhibition of sexual thoughts, desires, and behaviors represents an essential ability for adequate functioning in our daily life. Evidence derived from lesion studies indicates a link between sexual inhibition and the general ability for behavioral and cognitive control. This is further supported by the high comorbidity of sexual compulsivity with other inhibition-related disorders. Here, we aimed at investigating whether sexual and general inhibition recruit overlapping or distinct neural correlates in the brain. Furthermore, we investigated the specificity of two different kinds of sexual inhibition: inhibition of sexually driven motor responses and inhibition of sexual incoming information. To this end, 22 healthy participants underwent functional Magnetic Resonance Imaging (fMRI) while performing a task requiring general response inhibition (Go/No-go), as well as cognitive and motivational sexual inhibition (Negative Affective Priming and Approach-Avoidance task). Our within-subject within-session design enabled the direct statistical comparison between general and sexual inhibitory mechanisms. The general inhibition task recruited mainly prefrontal and insular regions, replicating previous findings. In contrast, the two types of sexual inhibition activated both common and distinct neural networks. Whereas cognitive sexual inhibition engaged the inferior frontal gyrus, the orbitofrontal cortex and the fusiform gyrus, motivational sexual inhibition was characterized by a hypoactivation in the anterolateral prefrontal cortex. Both types of sexual inhibition recruited the inferior frontal gyrus and the inferotemporal cortex. However, the activity of the inferior frontal gyrus did not correlate with behavioral inhibitory scores. These results support the hypothesis of inhibitory processing being an emergent property of a functional network.

]]>