ResearchPad - fungal-diseases https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Disseminated Histoplasmosis: Fighting a neglected killer of patients with advanced HIV disease in Latin America]]> https://www.researchpad.co/article/elastic_article_14538 <![CDATA[A screening of the MMV Pathogen Box® reveals new potential antifungal drugs against the etiologic agents of chromoblastomycosis]]> https://www.researchpad.co/article/elastic_article_13863 Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis caused by traumatic implantation of many species of black fungi. Due to the refractoriness of some cases and common recurrence of CBM, a more effective and less time-consuming treatment is mandatory. The aim of this study was to identify compounds with in vitro antifungal activity in the Pathogen Box® compound collection against different CBM agents. Synergism of these compounds with drugs currently used to treat CBM was also assessed. An initial screening of the drugs present in this collection at 1 μM was performed with a Fonsecaea pedrosoi clinical strain according to the EUCAST protocol. The compounds with activity against this fungus were also tested against other seven etiologic agents of CBM (Cladophialophora carrionii, Phialophora verrucosa, Exophiala jeanselmei, Exophiala dermatitidis, Fonsecaea monophora, Fonsecaea nubica, and Rhinocladiella similis) at concentrations ranging from 0.039 to 10 μM. The analysis of potential synergism of these compounds with itraconazole and terbinafine was performed by the checkerboard method. Eight compounds inhibited more than 60% of the F. pedrosoi growth: difenoconazole, bitertanol, iodoquinol, azoxystrobin, MMV688179, MMV021013, trifloxystrobin, and auranofin. Iodoquinol produced the lowest MIC values (1.25–2.5 μM) and MMV688179 showed MICs that were higher than all compounds tested (5 - >10 μM). When auranofin and itraconazole were tested in combination, a synergistic interaction (FICI = 0.37) was observed against the C. carrionii isolate. Toxicity analysis revealed that MMV021013 showed high selectivity indices (SI ≥ 10) against the fungi tested. In summary, auranofin, iodoquinol, and MMV021013 were identified as promising compounds to be tested in CBM models of infection.

]]>
<![CDATA[Distribution of Scedosporium species in soil from areas with high human population density and tourist popularity in six geographic regions in Thailand]]> https://www.researchpad.co/article/5c521862d5eed0c484797eef

Scedosporium is a genus comprising at least 10 species of airborne fungi (saprobes) that survive and grow on decaying organic matter. These fungi are found in high density in human-affected areas such as sewage-contaminated water, and five species, namely Scedosporium apiospermum, S. boydii, S. aurantiacum, S. dehoogii, and S. minutisporum, cause human infections. Thailand is a popular travel destination in the world, with many attractions present in densely populated areas; thus, large numbers of people may be exposed to pathogens present in these areas. We conducted a comprehensive survey of Scedosporium species in 350 soil samples obtained from 35 sites of high human population density and tourist popularity distributed over 23 provinces and six geographic regions of Thailand. Soil suspensions of each sample were inoculated on three plates of Scedo-Select III medium to isolate Scedosporium species. In total, 191 Scedosporium colonies were isolated from four provinces. The species were then identified using PCR and sequencing of the beta-tubulin (BT2) gene. Of the 191 isolates, 188 were S. apiospermum, one was S. dehoogii, and species of two could not be exactly identified. Genetic diversity analysis revealed high haplotype diversity of S. apiospermum. Soil is a major ecological niche for Scedosporium and may contain S. apiospermum populations with high genetic diversity. This study of Scedosporium distribution might encourage health care providers to consider Scedosporium infection in their patients.

]]>
<![CDATA[Is the unique camouflage strategy of Pneumocystis associated with its particular niche within host lungs?]]> https://www.researchpad.co/article/5c536a6ad5eed0c484a4736b ]]> <![CDATA[Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus]]> https://www.researchpad.co/article/5c3fa5f5d5eed0c484caa846

Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV.

]]>
<![CDATA[Subgingival areas as potential reservoirs of different Candida spp in type 2 diabetes patients and healthy subjects]]> https://www.researchpad.co/article/5c40f77fd5eed0c48438628b

Objectives

The aim of this cross-sectional observational study was to compare the prevalence of different oral Candida spp. in patients with Type 2 Diabetes and chronic periodontitis in two oral sites: dorsal surface of the tongue and subgingival area. In order to determine subgingival areas as potential reservoirs of yeasts, this study aimed to find differences in the yeasts’ detection between the dorsum of the tongue, as the oral site most commonly inhabited with microorganisms, and subgingival samples. Additionally, potential predictors for the yeasts prevalence were determined.

Material and methods

Subjects (N = 146) were divided into four groups: group A- healthy individuals without periodontitis, group B- healthy individuals with chronic periodontitis, group C- Type 2 Diabetes patients with good glycoregulation and Chronic periodontitis and group D- Type 2 Diabetes patients with poor glycoregulation and Chronic periodontitis. Samples were obtained from the tongue by swabbing. Subgingival plaque samples were taken by paper points and periodontal curette. Isolation and identification of different Candida spp. was done using ChromAgar medium. In addition, germ-tube production and carbohydrate assimilation tests were performed.

Results

The prevalence of Candida spp. was higher in diabetics with poor glycoregulation. The most frequently isolated species was Candida albicans followed by Candida glabrata and Candida tropicalis. In 15.6% of cases, Candida spp. was present in the subgingival area while absent on the tongue. Multivariate regression model showed that HbA1c was Candida spp. predictor for both locations.

Conclusions

Our results confirmed that there are Candida spp. carriers among subjects with clinically healthy oral mucosa. Also, this study identified subgingival areas as potential reservoirs of these pathogenic species. Glycoregulation has been recognized as a positive predictor factor of Candida spp.

]]>
<![CDATA[Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: Analysis of the French CF registry]]> https://www.researchpad.co/article/5c3e5023d5eed0c484d7de0a

Pseudomonas aeruginosa is the main cause of chronic airway infection in cystic fibrosis (CF). However, for unclear reasons some patients are never colonized by P. aeruginosa. The objectives of this study were to better define the clinical, genetic, and microbiological characteristics of such a subpopulation and to identify predictive factors of non-colonization with P. aeruginosa. The French CF patient registry 2013–2014 was used to identify CF patients aged ≥ 20 years. The clinical outcomes, CF Transmembrane conductance Regulator (CFTR) genotypes, and microbiological data of patients reported positive at least once for P. aeruginosa (“Pyo” group, n = 1,827) were compared to those of patients with no history of P. aeruginosa isolation (“Never” group, n = 303). Predictive factors of non-colonization by P. aeruginosa were identified by multivariate logistic regression model with backward selection. Absence of aspergillosis (odds ratio (OR) [95% CI] = 1.64 [1.01–2.66]), absence of diabetes (2.25 [1.21–4.18]), pancreatic sufficiency (1.81 [1.30–2.52]), forced expiratory volume 1 (FEV1) ≥ 80% (3.03 [2.28–4.03]), older age at CF diagnosis (1.03 [1.02–1.04]), and absence of F508del/F508del genotype (2.17 [1.48–3.19]) were predictive clinical factors associated with absence of infection (“Never” group). Microbiologically, this same group was associated with more frequent detection of Haemophilus influenzae and lower rates of Stenotrophomonas maltophilia, Achromobacter xylosoxidans and Aspergillus spp. (all p<0.01) in sputum. This study strongly suggests that the absence of pulmonary colonization by P. aeruginosa in a minority of CF adults (14.2%) is associated with a milder form of the disease. Recent progress in the development of drugs to correct CFTR deficiency thus may be decisive in the control of P. aeruginosa lung infection.

]]>
<![CDATA[Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts]]> https://www.researchpad.co/article/5c3e4fd7d5eed0c484d79991

Due to their antifungal activity, chitosan and its derivatives have potential to be used for treating yeast infections in humans. However, to be considered for use in human medicine, it is necessary to control and know the chemical composition of the compound, which is not always the case for polymeric chitosans. Here, we analyze the antifungal activity of a soluble and well-defined chito-oligosaccharide (CHOS) with an average polymerization degree (DPn) of 32 and fraction of acetylation (FA) of 0.15 (C32) on 52 medically relevant yeast strains. Minimal inhibitory concentrations (MIC) varied widely among yeast species, strains and isolates (from > 5000 to < 9.77 μg mL-1) and inhibition patterns showed a time- and dose-dependencies. The antifungal activity was predominantly fungicidal and was inversely proportional to the pH, being maximal at pH 4.5, the lowest tested pH. Furthermore, antifungal effects of CHOS fractions with varying average molecular weight indicated that those fractions with an intermediate degree of polymerization, i.e. DP 31 and 54, had the strongest inhibitory effects. Confocal imaging showed that C32 adsorbs to the cell surface, with subsequent cell disruption and accumulation of C32 in the cytoplasm. Thus, C32 has potential to be used as a therapy for fungal infections.

]]>
<![CDATA[The disabling consequences of Mycetoma]]> https://www.researchpad.co/article/5c181394d5eed0c484775471

Mycetoma is a neglected tropical disease endemic in tropical and subtropical countries, particularly Sudan. The disease is characterised by the triad of painless subcutaneous mass, multiple sinuses and discharge that contain grains. It is a chronic, debilitating disease most commonly affecting the feet or hands and leads to substantial morbidity, loss of function and even amputation. It predominantly affects poor, rural populations and patients typically present late with advanced disease and complications. In this descriptive cross-sectional study, we characterise the disabling consequences of mycetoma. The study included 300 patients; 228 (76%) male and 72 (24%) female with confirmed mycetoma seen at the Mycetoma Research Centre, University of Khartoum, Sudan in the period May 2016 and January 2017. The study design was based upon the International Classification of Functioning, Disability and Health, examining the impact of mycetoma on eight life domains. Our major finding is that mycetoma is a significantly disabling disease. Over 60% of the study population (181 patients) had moderate impairment or difficulty in at least one domain variable. The important disability was mobility impairment and walking difficulty that was reported in 119 patients (39.7%). There was significant pain associated with mycetoma lesions in 103 patients (34%), challenging the traditional view of mycetoma as a painless disease. The economic burden was also found to be substantial, with 126 patients (46.7%) reporting barriers to their ability to sustain themselves. This is the first study evaluating the disabling consequences of mycetoma and shows clear areas for intervention and further research. Options for mitigating social and economic impacts include routine integration of analgesia and physiotherapy into treatment protocols, and adapting educational provision and working practices based on disability assessment. Our data show that mycetoma is a public health issue with direct implications on quality of life.

]]>
<![CDATA[Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field]]> https://www.researchpad.co/article/5c22a0bed5eed0c4849ebffa

Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by relatively rapid wilting of maize plants before tasseling and until shortly before maturity. The disease’s causal agent is the fungus Harpophora maydis, a soil-borne and seed-borne pathogen, which is currently controlled using reduced sensitivity maize cultivars. In a former study, we showed that Azoxystrobin (AS) injected into a drip irrigation line assigned for each row can suppress H. maydis in the field and that AS seed coating can provide an additional layer of protection. In the present study, we examine a more cost-effective protective treatment using this fungicide with Difenoconazole mixture (AS+DC), or Fluazinam, or Fluopyram and Trifloxystrobin mixture, or Prothioconazole and Tebuconazole mixture in combined treatment of seed coating and a drip irrigation line for two coupling rows. A recently developed Real-Time PCR method revealed that protecting the plants using AS+DC seed coating alone managed to delay pathogen DNA spread in the maize tissues, in the early stages of the growth season (up to the age of 50 days from sowing), but was less effective in protecting the crops later. AS+DC seed coating combined with drip irrigation using AS+DC was the most successful treatment, and in the double-row cultivation, it reduced fungal DNA in the host tissues to near zero levels. This treatment minimized the development of wilt symptoms by 41% and recovered cob yield by a factor of 1.6 (to the level common in healthy fields). Moreover, the yield classified as A class (cob weight of more than 250 g) increased from 58% to 75% in this treatment. This successful treatment against H. maydis in Israel can now be applied in vast areas to protect sensitive maize cultivars against maize late wilt disease.

]]>
<![CDATA[Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens]]> https://www.researchpad.co/article/5bfc623ed5eed0c484ec7a25

Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.

]]>
<![CDATA[Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana]]> https://www.researchpad.co/article/5c0841aed5eed0c484fca706

Insects such as locusts and grasshoppers can reduce the effectiveness of pathogens and parasites by adopting different defense strategies. We investigated the behavioral thermopreference of Locusta migratoria manilensis (Meyen) (Orthoptera: Acrididae) induced by the fungus Beauveria bassiana, and the impact this behavior had on the fungal mycosis under laboratory conditions. By basking in higher temperature locations, infected nymphs elevated their thoracic temperature to 30–32.6 °C, which is higher than the optimum temperature (25°C) for B. bassiana conidial germination and hyphal development. A minimum thermoregulation period of 3 h/day increased survival of infected locusts by 43.34%. The therapeutic effect decreased when thermoregulation was delayed after initial infection. The fungus grew and overcame the locusts as soon as the thermoregulation was interrupted, indicating that thermoregulation helped the insects to cope with infection but did not completely rid them of the fungus. A significant enhancement in the number of haemocytes was observed in infected thermoregulating locusts, reaching levels that were even higher than those observed in the controls. In contrast, haemocyte concentration was severely reduced in infected insects that did not thermoregulate. In infected non-thermoregulating locusts, the reduction in haemocyte number was accompanied by an increase in fungal blastospore concentration that was obvious in the haemolymph by day four. In contrast, no circulating blastospores were found in the haemolymph of infected thermoregulating locusts three days post-inoculation. We also examined the phagocytic activity of infected insects in vivo by using fluorescein isothiocyanate (FITC)-labelled silica beads. The proportion of beads that was engulfed by haemocytes in infected, thermoregulating insects was similar to that in the controls throughout the experiment, whereas the rate of phagocytosis in infected, non-thermoregulating insects progressively decreased after infection. These findings demonstrated that behavioural thermoregulation can adversely affect B. bassiana mycosis in infected L. migratoria manilensis, thereby limiting the development of lethal entomopathogenic fungi in locusts. This is apparently accomplished through an increase in the levels of haemocytes, leading to greater phagocytic activity under certain environmental conditions.

]]>
<![CDATA[Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice]]> https://www.researchpad.co/article/5c0e98b1d5eed0c484eaaf71

The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.

]]>
<![CDATA[Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo]]> https://www.researchpad.co/article/5b28b928463d7e146ff345cd

Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei’s opportunity for macrophage parasitism and thereby enhancing this pathogen’s exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.

]]>
<![CDATA[Trunk surface agarwood-inducing technique with Rigidoporus vinctus: An efficient novel method for agarwood production]]> https://www.researchpad.co/article/5c032e01d5eed0c4844f8ad4

Only when Aquilaria spp. or Gyrinops spp. trees are wounded, due to insect attack, or microbial invasion, agarwood can be successfully induced. In the present study, a fungus which can induce agarwood formation efficiently was isolated and a suitable method for its application to induce agarwood formation was developed. Rigidoporus vinctus was isolated from the inner layers from infectious A. sinensis trees. When the fermentation liquid of fungi inoculated back to A. sinensis tree, agarwood was found to be induced. In addition, a novel method called trunk surface agarwood-inducing technique (Agar-Sit) was developed to produce agarwood with R. vinctus. The alcohol soluble extract content of the agarwood, up to 38.9%, far higher than the requirement (10%) in Chinese Pharmacopoeia and the six characteristic compounds of agarwood used as Chinese Medicinal Materials were all detected. Their relative percentages of the sesquiterpenes in the essential oil were 22.76%. This is the first report of the Agar-Sit and also the application of R. vinctus in agarwood induction. According to the results, when the combination of Agar-Sit and R. vinctus is used agarwood can be induced with high yield and good quality.

]]>
<![CDATA[Skin disease prevalence study in schoolchildren in rural Côte d'Ivoire: Implications for integration of neglected skin diseases (skin NTDs)]]> https://www.researchpad.co/article/5b07d0ea463d7e0d4a37a6ef

Background

Early detection of several skin-related neglected tropical diseases (skin NTDs)–including leprosy, Buruli ulcer, yaws, and scabies- may be achieved through school surveys, but such an approach has seldom been tested systematically on a large scale in endemic countries. Additionally, a better understanding of the spectrum of skin diseases and the at-risk populations to be encountered during such surveys is necessary to facilitate the process.

Methods

We performed a school skin survey for selected NTDs and the spectrum of skin diseases, among primary schoolchildren aged 5 to 15 in Côte d’Ivoire, West Africa. This 2-phase survey took place in 49 schools from 16 villages in the Adzopé health district from November 2015 to January 2016. The first phase involved a rapid visual examination of the skin by local community healthcare workers (village nurses) to identify any skin abnormality. In a second phase, a specialized medical team including dermatologists performed a total skin examination of all screened students with any skin lesion and provided treatment where necessary.

Results

Of a total of 13,019 children, 3,504 screened positive for skin lesions and were listed for the next stage examination. The medical team examined 1,138 of these children. The overall prevalence of skin diseases was 25.6% (95% CI: 24.3–26.9%). The predominant diagnoses were fungal infections (n = 858, prevalence: 22.3%), followed by inflammatory skin diseases (n = 265, prevalence: 6.9%). Skin diseases were more common in boys and in children living along the main road with heavy traffic. One case of multi-bacillary type leprosy was detected early, along with 36 cases of scabies. Our survey was met with very good community acceptance.

Conclusion

We carried out the first large-scale integrated, two-phase pediatric multi-skin NTD survey in rural Côte d’Ivoire, effectively reaching a large population. We found a high prevalence of skin diseases in children, but only limited number of skin NTDs. With the lessons learned, we plan to expand the project to a wider area to further explore its potential to better integrate skin NTD screening in the public health agenda.

]]>
<![CDATA[Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma]]> https://www.researchpad.co/article/5989daacab0ee8fa60ba993a

Treatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infections and to identify the causative agents of mycetoma. These include various imaging, cytological, histopathological, serological, and culture techniques; phenotypic characterisation; and molecular diagnostics. In this review, we summarize these techniques and identify their merits and pitfalls in the identification of the causative agents of mycetoma and the extent of the disease. We also emphasize the fact that there is no ideal diagnostic tool available to identify the causative agents and that future research should focus on the development of new and reliable diagnostic tools.

]]>
<![CDATA[Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay]]> https://www.researchpad.co/article/5989da83ab0ee8fa60b9b51a

New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK) from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay.

]]>
<![CDATA[The role of Aspartyl aminopeptidase (Ape4) in Cryptococcus neoformans virulence and authophagy]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be005d

In order to survive and cause disease, microbial pathogens must be able to proliferate at the temperature of their infected host. We identified novel microbial features associated with thermotolerance in the opportunistic fungal pathogen Cryptococcus neoformans using a random insertional mutagenesis strategy, screening for mutants with defective growth at 37°C. Among several thermosensitive mutants, we identified one bearing a disruption in a gene predicted to encode the Ape4 aspartyl aminopeptidase protein. Ape4 metalloproteases in other fungi, including Saccharomyces cerevisiae, are activated by nitrogen starvation, and they are required for autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway. However, none have been previously associated with altered growth at elevated temperatures. We demonstrated that the C. neoformans ape4 mutant does not grow at 37°C, and it also has defects in the expression of important virulence factors such as phospholipase production and capsule formation. C. neoformans Ape4 activity was required for this facultative intracellular pathogen to survive within macrophages, as well as for virulence in an animal model of cryptococcal infection. Similar to S. cerevisiae Ape4, the C. neoformans GFP-Ape4 fusion protein co-localized with intracytoplasmic vesicles during nitrogen depletion. APE4 expression was also induced by the combination of nutrient and thermal stress. Together these results suggest that autophagy is an important cellular process for this microbial pathogen to survive within the environment of the infected host.

]]>
<![CDATA[Eukaryote Culturomics of the Gut Reveals New Species]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6ab52

The repertoire of microeukaryotes in the human gut has been poorly explored, mainly in individuals living in northern hemisphere countries. We further explored this repertoire using PCR-sequencing and culture in seven individuals living in four tropical countries. A total of 41 microeukaryotes including 38 different fungal species and three protists were detected. Four fungal species, Davidiella tassiana, Davidiella sp., Corticiaceae sp., and Penicillium sp., were uniquely detected by culture; 27 fungal species were uniquely detected using PCR-sequencing and Candida albicans, Candida glabrata, Trichosporon asahii, Clavispora lusitaniae, Debaryomyces hansenii, Malassezia restricta, and Malassezia sp. were detected using both molecular and culture methods. Fourteen microeukaryotes were shared by the seven individuals, whereas 27 species were found in only one individual, including 11 species in Amazonia, nine species in Polynesia, five species in India, and two species in Senegal. These data support a worldwide distribution of Malassezia sp., Trichosporon sp., and Candida sp. in the gut mycobiome. Here, 13 fungal species and two protists, Stentor roeseli and Vorticella campanula, were observed for first time in the human gut. This study revealed a previously unsuspected diversity in the repertoire of human gut microeukaryotes, suggesting spots for further exploring this repertoire.

]]>