ResearchPad - genetic-engineering https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A MYB transcription factor, <i>BnMYB2</i>, cloned from ramie (<i>Boehmeria nivea</i>) is involved in cadmium tolerance and accumulation]]> https://www.researchpad.co/article/elastic_article_15762 MYB-related transcription factors play important roles in plant development and response to various environmental stresses. In the present study, a novel MYB gene, designated as BnMYB2 (GenBank accession number: MF741319.1), was isolated from Boehmeria nivea using rapid amplification of cDNA ends (RACE) and RT-PCR on a sequence fragment from a ramie transcriptome. BnMYB2 has a 945 bp open reading frame encoding a 314 amino acid protein that contains a DNA-binding domain and shares high sequence identity with MYB proteins from other plant species. The BnMYB2 promoter contains several putative cis-acting elements involved in stress or phytohormone responses. A translational fusion of BnMYB2 with enhanced green fluorescent protein (eGFP) showed nuclear and cytosolic subcellular localization. Real-time PCR results indicated that BnMYB2 expression was induced by Cadmium (Cd) stress. Overexpression of BnMYB2 in Arabidopsis thaliana resulted in a significant increase of Cd tolerance and accumulation. Thus, BnMYB2 positively regulated Cd tolerance and accumulation in Arabidopsis, and could be used to enhance the efficiency of Cd removal with plants.

]]>
<![CDATA[OmniChange: The Sequence Independent Method for Simultaneous Site-Saturation of Five Codons]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7f19

Focused mutant library generation methods have been developed to improve mainly “localizable” enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modifications. Here we report, a multiple site saturation mutagenesis method, OmniChange, which simultaneously and efficiently saturates five independent codons. As proof of principle, five chemically cleaved DNA fragments, each carrying one NNK-degenerated codon, were generated and assembled to full gene length in a one-pot-reaction without additional PCR-amplification or use of restriction enzymes or ligases. Sequencing revealed the presence of up to 27 different codons at individual positions, corresponding to 84.4% of the theoretical diversity offered by NNK-degeneration. OmniChange is absolutely sequence independent, does not require a minimal distance between mutated codons and can be accomplished within a day.

]]>
<![CDATA[Systematic scoping review of the concept of ‘genetic identity’ and its relevance for germline modification]]> https://www.researchpad.co/article/Nb5b3e5e6-9f74-4bf5-850c-740f6e227f81

EU legislation prohibits clinical trials that modify germ line ‘genetic identity’. ‘Genetic identity’ however, is left undefined. This study aims to identify the use of the term ‘genetic identity’ in academic literature, and investigate its relevance for debates on genetic modification. A total of 616 articles that contained the term were identified. Content analysis revealed that the term was used in various and contradicting ways and a clear understanding of the term is lacking. This review demonstrates that the EU legislation is open to interpretation, because of the diversity of meaning with which ‘genetic identity’ is currently used. Because of the diversity of meaning with which ‘genetic identity’ is used and understood, further reflection is needed. This requires further medical, legal, ethical and social debate and a coordinated response at both a European and a global level.

]]>
<![CDATA[Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors]]> https://www.researchpad.co/article/5c784ff3d5eed0c4840079a5

Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.

]]>
<![CDATA[Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus]]> https://www.researchpad.co/article/5c897773d5eed0c4847d2d2c

The split GFP technique is based on the auto-assembly of GFP when two polypeptides–GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.

]]>
<![CDATA[Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis]]> https://www.researchpad.co/article/5c6c75c6d5eed0c4843d0173

The content and size of stone cell clusters affects the quality of pear fruit, and monolignol polymerization and deposition in the cell walls constitute a required step for stone cell formation. Laccase (LAC) is the key enzyme responsible for the polymerization of monolignols. However, there are no reports on the LAC family in pear (Pyrus bretschneideri), and the identity of the members responsible for lignin synthesis has not been clarified. Here, 41 LACs were identified in the whole genome of pear. All Pyrus bretschneideri LACs (PbLACs) were distributed on 13 chromosomes and divided into four phylogenetic groups (I-IV). In addition, 16 segmental duplication events were found, implying that segmental duplication was a primary reason for the expansion of the PbLAC family. LACs from the genomes of three Rosaceae species (Prunus mummer, Prunus persica, and Fragaria vesca) were also identified, and an interspecies collinearity analysis was performed. The phylogenetic analysis, sequence alignments and spatiotemporal expression pattern analysis suggested that PbLAC1, 5, 6, 29, 36 and 38 were likely associated with lignin synthesis and stone cell formation in fruit. The two target genes of Pyr-miR1890 (a microRNA identified from pear fruit that is associated with lignin and stone cell accumulation), PbLAC1 and PbLAC14, were selected for genetic transformation. Interfamily transfer of PbLAC1 into Arabidopsis resulted in a significant increase (approximately 17%) in the lignin content and thicker cell walls in interfascicular fibre and xylem cells, which demonstrated that PbLAC1 is involved in lignin biosynthesis and cell wall development. However, the lignin content and cell wall thickness were not changed significantly in the PbLAC14-overexpressing transgenic Arabidopsis plants. This study revealed the function of PbLAC1 in lignin synthesis and provides important insights into the characteristics and evolution of the PbLAC family.

]]>
<![CDATA[Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model]]> https://www.researchpad.co/article/5c76fe09d5eed0c484e5b330

As Alzheimer’s disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice. We report that trans ε-viniferin could go through the blood brain barrier, reduces size and density of amyloid deposits and decreases reactivity of astrocytes and microglia, after a weekly intraperitoneal injection at 10 mg/kg from 3 to 6 months of age.

]]>
<![CDATA[Cloning and functional analysis of the promoter of a stress-inducible gene (Zmap) in maize]]> https://www.researchpad.co/article/5c673070d5eed0c484f37b30

The anionic peroxidases play an important role in a variety of plant physiological processes. We characterized and isolated the Zmap promoter (PZmap) at the 5′ flanking region in order to better understand the regulatory mechanisms of Zmap gene expression. A series of PZmap deletion derivatives, termed a1 –a6, at positions −1694, −1394, −1138, −784, −527 and −221 from the translation start site were blended to the β-glucuronidase reporter gene. Agrobacterium-mediated transformation method was used to study each deletion construct in tobaccos. Sequence analysis showed that several cis-acting elements (MYB binding site, Box-II, a TGACG-element, a CGTCA-element and a low temperature responsive element) were located within the promoter. Deletion analysis suggested the sequence between −1,694 and −1394bp may contain cis-elements associated with GUS up regulation. The MYB binding site (-757) might act as a negative drought-responsive element. There might be repressor elements located in the region (−1,694 to −1394bp) to repress Zmap expression under 4°C. The characterized promoter would be an ideal candidate for genetic engineering for improving the resistance of maize to different stressors.

]]>
<![CDATA[ARR22 overexpression can suppress plant Two-Component Regulatory Systems]]> https://www.researchpad.co/article/5c6b2616d5eed0c4842892c3

In plants, several developmental processes are co-coordinated by cytokinins via phosphorylation dependent processes of the Two-Component System (TCS). An outstanding challenge is to track phosphorelay flow from cytokinin perception to its molecular outputs, of which gene activation plays a major role. To address this issue, a kinetic-based reporter system was expounded to track TCS phosphorelay activity in vivo that can distinguish between basal and cytokinin dependent effects of overexpressed TCS members. The TCS phosphorelay can be positively activated by cytokinin and inhibited by pharmaceuticals or naturally interfering components. In this case we took advantage of the phosphohistidine-phosphatase Arabidopsis Response Regulator (ARR) 22 and investigated its phosphocompetition with other TCS members in regulating promoters of ARR5 and WUS in Arabidopsis thaliana cell culture protoplasts. In congruency with the proposed function of ARR22, overexpression of ARR22 blocked the activation of all B-type ARRs in this study in a TCS dependent manner. Furthermore, this effect could not be mimicked by A-type response regulator overexpression or compensated by AHP overexpression. Compared to other reporter assays, ours mimicked effects previously observed only in transgenic plants for all of the TCS proteins studied, suggesting that it is possible to expose phosphocompetition. Thus, our approach can be used to investigate gene signaling networks involving the TCS by leveraging ARR22 as a TCS inhibitor along with B-type ARR overexpression.

]]>
<![CDATA[Alternative splicing of ZmCCA1 mediates drought response in tropical maize]]> https://www.researchpad.co/article/5c5b5269d5eed0c4842bc7b1

The circadian clock regulates numerous biological processes in plants, especially development and stress responses. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) is one of the core components of the day–night rhythm response and is reportedly associated with ambient temperature in Arabidopsis thaliana. However, it remains unknown if alternative splicing of ZmCCA1 is modulated by external stress in maize, such as drought stress and photoperiod. Here, we identified three ZmCCA1 splice variants in the tropical maize line CML288, which are predicted to encode three different protein isoforms, i.e., ZmCCA1.1, ZmCCA1.2, and ZmCCA1.3, which all retain the MYB domain. In maize, the expression levels of ZmCCA1 splice variants were influenced by photoperiod, tissue type, and drought stress. In transgenic A. thaliana, ZmCCA1.1 may be more effective than ZmCCA1.3 in increasing drought tolerance while ZmCCA1.2 may have only a small effect on tolerance to drought stress. Additionally, although CCA1 genes have been found in many plant species, alternative CCA1 splicing events are known to occur in species-specific ways. Our study provides new sight to explore the function of ZmCCA1 splice variants’ response to abiotic stress, and clarify the linkage between circadian clock and environmental stress in maize.

]]>
<![CDATA[SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana]]> https://www.researchpad.co/article/5c4b7f29d5eed0c484840ad2

A wide range of biological processes are regulated by sumoylation, a post-translational modification involving the conjugation of SUMO (Small Ubiquitin-Like Modifier) to protein. In Arabidopsis thaliana, AtSIZ1 encodes a SUMO E3 ligase for SUMO modification. siz1 mutants displayed defective secondary cell walls (SCWs) in inflorescence fiber cells. Such defects were caused by repression of SND1/NST1-mediated transcriptional networks. Yeast two-hybrid assay indicated that SIZ1 interacts with the LBD30 C-terminal domain, which was further confirmed using bimolecular fluorescence complementation and immunoprecipitation. Mass spectrometry and co-immunoprecipitation indicated that SIZ1 mediates SUMO conjugation to LBD30 at the K226 residue. Genes controlling SCW formation were activated by the overexpression of LBD30, but not in the LBD30(K226R) mutant. LBD30 enhancement of SCW formation resulted from upregulation of SND1/NST1-mediated transcriptional networks. This study presents a mechanism by which sumoylation of LBD30, mediated by SIZ1, regulates SCW formation in A. thaliana.

]]>
<![CDATA[Association of attitudes towards genetically modified food among young adults and their referent persons]]> https://www.researchpad.co/article/5c61e900d5eed0c48496f613

Most research on consumer attitudes does not consider that attitudes are likely influenced by people with whom we have some relationship even though socioeconomic, psychological and political theories recognize the importance of referent individuals’ opinions in attitude formation. Knowledge on the role of referent individuals’ opinions in attitude formation could improve the understanding of consumer acceptance of foods frequently associated with health or other concerns. This article examines the association of attitudes towards genetically modified (GM) crops and foods between young adults and their referent individuals using data collected in 2016 via surveys from the Czech Republic, Russia and Ukraine. Loglinear models of cell counts in contingency tables reveal a positive association of GM food attitudes between young adults and their referent individuals. This association was stronger in Russia and the Czech Republic than it was in Ukraine and stronger between female young adults and their referent individuals than between males and their referent individuals. Concordance in GM food attitudes with mothers is significantly stronger than concordance with best friends but not significantly different from concordance with fathers.

]]>
<![CDATA[Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes]]> https://www.researchpad.co/article/5c521848d5eed0c484797a14

A novel bipartite begomovirus, Blechum interveinal chlorosis virus (BleICV), was characterized at the genome level. Comparative analyses revealed that BleICV coat protein (CP) gene promoter is highly divergent from the equivalent region of other begomoviruses (BGVs), with the single exception of Tomato chino La Paz virus (ToChLPV) with which it shares a 23-bp phylogenetic footprint exhibiting dyad symmetry. Systematic examination of the homologous CP promoter segment of 132 New World BGVs revealed the existence of a quasi-palindromic DNA segment displaying a strongly conserved ACTT-(N7)-AAGT core. The spacer sequence between the palindromic motifs is constant in length, but its sequence is highly variable among viral species, presenting a relaxed consensus (TT)GGKCCCY, which is similar to the Conserved Late Element or CLE (GTGGTCCC), a putative TrAP-responsive element. The homologous CP promoter region of Old World BGVs exhibited a distinct organization, with the putative TATA-box overlapping the left half of the ACTT-N7 composite element. Similar CP promoter sequences, dubbed “TATA-associated composite element” or TACE, were found in viruses belonging to different Geminiviridae genera, hence hinting unsuspected evolutionary relationships among those lineages. To get cues about the TACE function, the regulatory function of the CLE was explored in distinct experimental systems. Transgenic tobacco plants harboring a GUS reporter gene driven by a promoter composed by CLE multimers expressed high beta-glucuronidase activity in absence of viral factors, and that expression was increased by begomovirus infection. On the other hand, the TrAP-responsiveness of a truncated CP promoter of Tomato golden mosaic virus (TGMV) was abolished by site-directed mutation of the only CLE present in it, whereas the artificial addition of one CLE to the -125 truncated promoter strongly enhanced the transactivation level in tobacco protoplasts. These results indicate that the CLE is a TrAP-responsive element, hence providing valuable clues to interpret the recurrent association of the CLE with the TACE. On the basis of the aforesaid direct evidences and the insights afforded by the extensive comparative analysis of BleICV CP promoter, we propose that the TACE might be involved in the TrAP-mediated derepression of CP gene in vascular tissues.

]]>
<![CDATA[Effect of ZFN-edited myostatin loss-of-function mutation on gut microbiota in Meishan pigs]]> https://www.researchpad.co/article/5c478c68d5eed0c484bd2230

Intestine contains the body's second largest genetic information, so a relatively stable microbiota ecosystems and interactions between intestinal micro-organisms play a pivotal role in the normal growth and development in animals. The establishment of intestinal microflora is affected by a variety of factors such as species, environmental factors, developmental stage, organizational structure and physiological characteristics of various parts of the digestive tract. Gene editing technology such as ZFN has recently been used as a new approach to replace the traditional transgenic technology and to make genetic modifications in animals. However, it is not known if genetic modification by gene editing technology will have any impact on gut microbiota. In this study, by sequencing 16S rRNA collected from rectum, we investigated the effects of ZFN-mediated myostatin (MSTN) loss-of-function mutation (MSTN-/-) on gut microbiota in Meishan pigs. Our results showed that the fecal microbial composition is very similar between MSTN-/- Meishan pigs and wild type Meishan pigs. Although significant differences in certain individual strains were observed, all the dominant microorganism species are basically the same between MSTN-/- and wild type pigs. However, these differences do not adversely affect MSTN-/- Meishan pigs. Thus, it is concluded that ZFN-mediated MSTN loss-of-function mutation did not have any adverse effect on the gut microbiota in Meishan pigs.

]]>
<![CDATA[Machine learning framework for assessment of microbial factory performance]]> https://www.researchpad.co/article/5c478c5fd5eed0c484bd1ec8

Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess conditions. On the other hand, machine learning, complementary to metabolic modeling necessitates large amounts of data. Building such a database for metabolic engineering designs requires significant manpower and is prone to human errors and bias. We propose an approach to integrate data-driven methods with genome scale metabolic model for assessment of microbial bio-production (yield, titer and rate). Using engineered E. coli as an example, we manually extracted and curated a data set comprising about 1200 experimentally realized cell factories from ~100 papers. We furthermore augmented the key design features (e.g., genetic modifications and bioprocess variables) extracted from literature with additional features derived from running the genome-scale metabolic model iML1515 simulations with constraints that match the experimental data. Then, data augmentation and ensemble learning (e.g., support vector machines, gradient boosted trees, and neural networks in a stacked regressor model) are employed to alleviate the challenges of sparse, non-standardized, and incomplete data sets, while multiple correspondence analysis/principal component analysis are used to rank influential factors on bio-production. The hybrid framework demonstrates a reasonably high cross-validation accuracy for prediction of E.coli factory performance metrics under presumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8 and 0.93 on new data not seen by the model).

]]>
<![CDATA[Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer’s disease amyloidosis]]> https://www.researchpad.co/article/5c478c3dd5eed0c484bd1017

Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.

]]>
<![CDATA[LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus]]> https://www.researchpad.co/article/5c37b785d5eed0c4844902ee

Nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) form symbioses with plant roots and these are established by precise regulation of symbiont accommodation within host plant cells. In model legumes such as Lotus japonicus and Medicago truncatula, rhizobia enter into roots through an intracellular invasion system that depends on the formation of a root-hair infection thread (IT). While IT-mediated intracellular rhizobia invasion is thought to be the most evolutionarily derived invasion system, some studies have indicated that a basal intercellular invasion system can replace it when some nodulation-related factors are genetically modified. In addition, intracellular rhizobia accommodation is suggested to have a similar mechanism as AMF accommodation. Nevertheless, our understanding of the underlying genetic mechanisms is incomplete. Here we identify a L. japonicus nodulation-deficient mutant, with a mutation in the LACK OF SYMBIONT ACCOMMODATION (LAN) gene, in which root-hair IT formation is strongly reduced, but intercellular rhizobial invasion eventually results in functional nodule formation. LjLAN encodes a protein that is homologous to Arabidopsis MEDIATOR 2/29/32 possibly acting as a subunit of a Mediator complex, a multiprotein complex required for gene transcription. We also show that LjLAN acts in parallel with a signaling pathway including LjCYCLOPS. In addition, the lan mutation drastically reduces the colonization levels of AMF. Taken together, our data provide a new factor that has a common role in symbiont accommodation process during root nodule and AM symbiosis.

]]>
<![CDATA[Production of santalenes and bergamotene in Nicotiana tabacum plants]]> https://www.researchpad.co/article/5c390bcad5eed0c48491e5a0

Terpenes play an important role in plant–insect relationships, and these relationships can potentially be modified by altering the profile of terpenes emitted from plants using metabolic engineering methods. Transgenic plants generated by employing such methods offer the prospect of low-cost sustainable pest management; in this regard, we used chloroplast targeting and cytosolic mevalonic acid pathway enhancement in this study to investigate the interaction of santalenes and bergamotene with insects. The santalene- and bergamotene-emitting transgenic tobacco plants thus generated were utilized to study host preference in the green peach aphid (Myzus persicae (Sulzer)). The results showed that co-expression of either 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) or truncated HMGR with santalene synthase led to the production of higher amounts of santalenes and bergamotene in transgenic tobacco plants, and that these santalene- and bergamotene-emitting plants were attractive to green peach aphids. We accordingly propose that such transgenic plants may have potential application in pest management as a trap crop to prevent green peach aphid infestation of wild-type tobacco plants.

]]>
<![CDATA[SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling]]> https://www.researchpad.co/article/5c09945ed5eed0c4842aeb50

Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.

]]>
<![CDATA[Transgenerational effects of ungulates and pre-dispersal seed predators on offspring success and resistance to herbivory]]> https://www.researchpad.co/article/5c1ab875d5eed0c484028209

Herbivorous mammals and insect pre-dispersal seed predators are two types of herbivores that, despite their functional and morphological differences, tend to severely impact many plant species, highly decreasing their seed production and even imperiling the performance of their offspring through transgenerational effects. However, how they influence offspring resistance to herbivory remains largely unknown. In this study we experimentally examined the effects of ungulates and pre-dispersal seed predators on seed quality as well as on the emergence, survival and resistance to herbivory of the seedlings of a semiarid herb. We found that ungulates reduced seedling recruitment but increased seedling resistance to leaf miners. These effects were probably a consequence of insufficient carbon provisioning in seeds that reduced seed viability and provoked carbon limitation in seedlings. Pre-dispersal seed predators did not influence seedling recruitment, but seedlings from mothers damaged by ungulates and by pre-dispersal seed predators suffered less herbivory by grasshoppers. Remarkably, intra-individual differences in damage by pre-dispersal seed predators affected the rate of damage underwent by seedlings. That is, seedlings derived from fruits attacked by seed predators were more resistant to herbivores than siblings derived from un-attacked fruits in plant populations exposed to ungulates. To our knowledge, this is the first study reporting variation in transgenerational-induced resistance of seedlings from the same maternal plant. This study is a valuable contribution to the understanding of transgenerational effects of multiple herbivores and their implications for a deeper comprehension of the natural systems in which they co-occur.

]]>