ResearchPad - genetic-epidemiology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Evidence of recombination of vaccine strains of lumpy skin disease virus with field strains, causing disease]]> https://www.researchpad.co/article/elastic_article_14489 Vaccination against lumpy skin disease (LSD) is crucial for maintaining the health of animals and the economic sustainability of farming. Either homologous vaccines consisting of live attenuated LSD virus (LSDV) or heterologous vaccines consisting of live attenuated sheeppox or goatpox virus (SPPV/GPPV) can be used for control of LSDV. Although SPPV/GTPV-based vaccines exhibit slightly lower efficacy than live attenuated LSDV vaccines, they do not cause vaccine-induced viremia, fever, and clinical symptoms of the disease following vaccination, caused by the replication capacity of live attenuated LSDVs. Recombination of capripoxviruses in the field was a long-standing hypothesis until a naturally occurring recombinant LSDV vaccine isolate was detected in Russia, where the sheeppox vaccine alone is used. This occurred after the initiation of vaccination campaigns using LSDV vaccines in the neighboring countries in 2017, when the first cases of presumed vaccine-like isolate circulation were documented with concurrent detection of a recombinant vaccine isolate in the field. The follow-up findings presented herein show that during the period from 2015 to 2018, the molecular epidemiology of LSDV in Russia split into two independent waves. The 2015–2016 epidemic was attributable to the field isolate. Whereas the 2017 epidemic and, in particular, the 2018 epidemic represented novel disease importations that were not genetically linked to the 2015–2016 field-type incursions. This demonstrated a new emergence rather than the continuation of the field-type epidemic. Since recombinant vaccine-like LSDV isolates appear to have entrenched across the country’s border, the policy of using certain live vaccines requires revision in the context of the biosafety threat it presents.

]]>
<![CDATA[Impacts of host gender on <i>Schistosoma mansoni</i> risk in rural Uganda—A mixed-methods approach]]> https://www.researchpad.co/article/elastic_article_13851 Globally, over 230 million people are infected with schistosomiasis, an infectious disease caused by parasitic helminths. Humans can get infected when they contact water which contains Schistosoma parasites. Although the disease can be treated with a drug, people get rapidly reinfected in certain high-transmission settings. Drug treatment alone may not be sufficient to eliminate this disease and additional interventions such as health promotion or improvements in water and sanitation need to be scaled up. To provide recommendations to these control programmes we carried out interdisciplinary research in Eastern Uganda to understand the influence of gender on schistosomiasis risk. We found that the water contact behaviour of boys and girls is quite similar, and we did not see differences in reinfection or genetic diversity of the parasite between boys and girls. Differences in water contact between genders is greater in adults, and further research is required for these individuals. In this setting, infection rates are high in school-aged children and there are no differences between genders. These results emphasise improved control efforts for all school-aged children in communities like these. Our interdisciplinary approach provided complementary findings. Such an integrated approach can therefore have more power to meaningfully inform policy on schistosomiasis control.

]]>
<![CDATA[Identification and characterization of nonpolio enterovirus associated with nonpolio-acute flaccid paralysis in polio endemic state of Uttar Pradesh, Northern India]]> https://www.researchpad.co/article/5c5b5244d5eed0c4842bc5c5

Despite polio eradication, nonpolio enterovirus (NPEV) detection amid polio surveillance, which is considered to have implications in paralysis, requires attention. The attributes of NPEV infections in nonpolio-AFP (NPAFP) cases from Uttar Pradesh (UP), India, remain undetermined and are thus investigated. A total of 1839 stool samples collected from patients with acute flaccid paralysis (AFP) from UP, India, between January 2010 and October 2011 were analyzed as per the WHO algorithm. A total of 359 NPAFP cases yielded NPEVs, which were subjected to microneutralization assay, partial VP1 gene-based molecular serotyping and phylogenetic analysis. Demographic and clinical-epidemiological features were also ascertained. Echoviruses (29%) and Coxsackievirus (CV)-B (17%) were the most common viruses identified by the microneutralization assay. The molecular genotyping characterized the NPEVs into 34 different serotypes, corresponding to Enterovirus (EV)-A (1.6%), EV-B (94%) and EV-C (5.3%) species. The rarely described EV serotypes, such as EV-C95, CV-A20, EV-C105, EV-B75, EV-B101, and EV-B107, were also identified. NPEV-associated AFP was more prevalent in younger male children, peaked in the monsoon months and was predominantly found in the central part of the state. The NPEV strains isolated in the study exhibited genetic diversity from those isolated in other countries. These form part of a different cluster or subcluster existing in cocirculation, limited to India only. This study augments the understanding of epidemiological features and demonstrates the extensive diversity exhibited by the NPEV strains in NPAFP cases from the polio-endemic region. It also underscores the need or effective long-term strategies to monitor NPEV circulation and its associated health risks in the post-polio eradication era.

]]>
<![CDATA[No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study]]> https://www.researchpad.co/article/5c478c44d5eed0c484bd134e

Background

Studies have shown strong positive associations between serum urate (SU) levels and chronic kidney disease (CKD) risk; however, whether the relation is causal remains uncertain. We evaluate whether genetic data are consistent with a causal impact of SU level on the risk of CKD and estimated glomerular filtration rate (eGFR).

Methods and findings

We used Mendelian randomization (MR) methods to evaluate the presence of a causal effect. We used aggregated genome-wide association data (N = 110,347 for SU, N = 69,374 for gout, N = 133,413 for eGFR, N = 117,165 for CKD), electronic-medical-record-linked UK Biobank data (N = 335,212), and population-based cohorts (N = 13,425), all in individuals of European ancestry, for SU levels and CKD. Our MR analysis showed that SU has a causal effect on neither eGFR level nor CKD risk across all MR analyses (all P > 0.05). These null associations contrasted with our epidemiological association findings from the 4 population-based cohorts (change in eGFR level per 1-mg/dl [59.48 μmol/l] increase in SU: −1.99 ml/min/1.73 m2; 95% CI −2.86 to −1.11; P = 8.08 × 10−6; odds ratio [OR] for CKD: 1.48; 95% CI 1.32 to 1.65; P = 1.52 × 10−11). In contrast, the same MR approaches showed that SU has a causal effect on the risk of gout (OR estimates ranging from 3.41 to 6.04 per 1-mg/dl increase in SU, all P < 10−3), which served as a positive control of our approach. Overall, our MR analysis had >99% power to detect a causal effect of SU level on the risk of CKD of the same magnitude as the observed epidemiological association between SU and CKD. Limitations of this study include the lifelong effect of a genetic perturbation not being the same as an acute perturbation, the inability to study non-European populations, and some sample overlap between the datasets used in the study.

Conclusions

Evidence from our series of causal inference approaches using genetics does not support a causal effect of SU level on eGFR level or CKD risk. Reducing SU levels is unlikely to reduce the risk of CKD development.

]]>
<![CDATA[What is epidemiology? Changing definitions of epidemiology 1978-2017]]> https://www.researchpad.co/article/5c1813a4d5eed0c48477570f

Context

Epidemiology is a discipline which has evolved with the changes taking place in society and the emergence of new diseases and new discipline related to epidemiology. With these evolutions, it is important to understand epidemiology and to analyse the evolution of content of definitions of epidemiology.

Objectives

The main objective of this paper was to identify new definitions of epidemiology available since 1978. Secondary objectives were to analyse the content of these definitions, to compare them with those used by Lilienfeld and to determine whether changes have taken place over the last forty years.

Methods

A review of grey literature and published literature was conducted to find the definitions of epidemiology written between 1978 and 2017.

Results

102 definitions of epidemiology were retained. They helped to highlight 20 terms and concepts related to epidemiology. Most of them were already used in the definitions used by Lilienfeld. Five terms were present in more than 50% of definitions from the period 1978 to 2017: “population”, “study”, “disease”, “health” and “distribution”. Several developments have occurred: strengthening of the terms “control” and “health” already used, the concept of “disease” was less frequently encountered whereas the concepts “infectious diseases”, “mass phenomenon” are no longer used in definitions from 1978 to 2017.

Conclusion

This evolution of content of definition of epidemiology is absent from books on epidemiology. A thematic analysis of definitions of epidemiology could be conducted in order to improve our understanding of changes observed.

]]>
<![CDATA[Porcine circovirus 2 (PCV-2) genotype update and proposal of a new genotyping methodology]]> https://www.researchpad.co/article/5c12cf1ed5eed0c484913f75

Porcine circovirus 2 (PCV-2) is one of the most widespread viral infections of swine, causing a remarkable economic impact because of direct losses and indirect costs for its control. As other ssDNA viruses, PCV-2 is characterized by a high evolutionary rate, leading to the emergence of a plethora of variants with different biological and epidemiological features. Over time, several attempts have been made to organize PCV-2 genetic heterogeneity in recognized genotypes. This categorization has clearly simplified the epidemiological investigations, allowing to identify different spatial and temporal patterns among genotypes. Additionally, variable virulence and vaccine effectiveness have also been hypothesized. However, the rapid increase in sequencing activity, coupled with the per se high viral variability, has challenged the previously established nomenclature, leading to the definition of several study-specific genotypes and hindering the capability of performing comparable epidemiological studies.

Based on these premises, an updated classification scheme is herein reported. Recognizing the impossibility of defining a clear inter-cluster p-distance cut-off, the present study proposes a phylogeny-grounded genotype definition based on three criteria: maximum intra-genotype p-distance of 13% (calculated on the ORF2 gene), bootstrap support at the corresponding internal node higher than 70% and at least 15 available sequences. This scheme allowed defining 8 genotypes (PCV-2a to PCV-2h), which six of those had been previously proposed. To minimize the inconvenience of implementing a new classification, the most common names already adopted have been maintained when possible. The analysis of sequence-associated metadata highlighted a highly unbalanced sequencing activity in terms of geographical, host and temporal distribution. The PCV-2 molecular epidemiology scenario appears therefore characterized by a severe bias that could lead to spurious associations between genetic and epidemiological/biological viral features. While the suggested classification can establish a “common language” for future studies, further efforts should be paid to achieve a more homogeneous and informative representation of the PCV-2 global scenario.

]]>
<![CDATA[Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study]]> https://www.researchpad.co/article/5989db0fab0ee8fa60bcbb96

In this study, Granell and colleagues used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ years in the Avon Longitudinal Study of Parents and Children (ALSPAC) and found that higher BMI increases the risk of asthma in mid-childhood.

Please see later in the article for the Editors' Summary

]]>
<![CDATA[A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection]]> https://www.researchpad.co/article/5989da8aab0ee8fa60b9d9b0

We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects.

]]>
<![CDATA[Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses]]> https://www.researchpad.co/article/5989da8eab0ee8fa60b9f083

Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10−32), PRODH with proline (P-value  = 1.11×10−19), SLC16A9 with carnitine level (P-value  = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10−8) and 2p12 locus with valine (P-value  = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.

]]>
<![CDATA[Endothelial Protein C Receptor Gene Variants Not Associated with Severe Malaria in Ghanaian Children]]> https://www.researchpad.co/article/5989dadfab0ee8fa60bbb5be

Background

Two recent reports have identified the Endothelial Protein C Receptor (EPCR) as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study.

Methods

Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1–156 months and 1,866 apparently healthy children aged 2–161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses.

Results

A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia.

Conclusion

Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes.

]]>
<![CDATA[Phenotype Refinement Strengthens the Association of AHR and CYP1A1 Genotype with Caffeine Consumption]]> https://www.researchpad.co/article/5989daf1ab0ee8fa60bc139b

Two genetic loci, one in the cytochrome P450 1A1 (CYP1A1) and 1A2 (CYP1A2) gene region (rs2472297) and one near the aryl-hydrocarbon receptor (AHR) gene (rs6968865), have been associated with habitual caffeine consumption. We sought to establish whether a more refined and comprehensive assessment of caffeine consumption would provide stronger evidence of association, and whether a combined allelic score comprising these two variants would further strengthen the association. We used data from between 4,460 and 7,520 women in the Avon Longitudinal Study of Parents and Children, a longitudinal birth cohort based in the United Kingdom. Self-report data on coffee, tea and cola consumption (including consumption of decaffeinated drinks) were available at multiple time points. Both genotypes were individually associated with total caffeine consumption, and with coffee and tea consumption. There was no association with cola consumption, possibly due to low levels of consumption in this sample. There was also no association with measures of decaffeinated drink consumption, indicating that the observed association is most likely mediated via caffeine. The association was strengthened when a combined allelic score was used, accounting for up to 1.28% of phenotypic variance. This was not associated with potential confounders of observational association. A combined allelic score accounts for sufficient phenotypic variance in caffeine consumption that this may be useful in Mendelian randomization studies. Future studies may therefore be able to use this combined allelic score to explore causal effects of habitual caffeine consumption on health outcomes.

]]>
<![CDATA[The Association between Individual SNPs or Haplotypes of Matrix Metalloproteinase 1 and Gastric Cancer Susceptibility, Progression and Prognosis]]> https://www.researchpad.co/article/5989db08ab0ee8fa60bc9120

Background

The single nucleotide polymorphisms (SNPs) in matrix metalloproteinase 1(MMP-1)play important roles in some cancers. This study examined the associations between individual SNPs or haplotypes in MMP-1 and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China.

Methods

In this case–controlled study, there were 404 patients with gastric cancer and 404 healthy controls. Seven SNPs were genotyped using the MALDI-TOF MS system. Then, SPSS software, Haploview 4.2 software, Haplo.states software and THEsias software were used to estimate the association between individual SNPs or haplotypes of MMP-1 and gastric cancer susceptibility, progression and prognosis.

Results

Among seven SNPs, there were no individual SNPs correlated to gastric cancer risk. Moreover, only the rs470206 genotype had a correlation with histologic grades, and the patients with GA/AA had well cell differentiation compared to the patients with genotype GG (OR=0.573; 95%CI: 0.353–0.929; P=0.023). Then, we constructed a four-marker haplotype block that contained 4 common haplotypes: TCCG, GCCG, TTCG and TTTA. However, all four common haplotypes had no correlation with gastric cancer risk and we did not find any relationship between these haplotypes and clinicopathological parameters in gastric cancer. Furthermore, neither individual SNPs nor haplotypes had an association with the survival of patients with gastric cancer.

Conclusions

This study evaluated polymorphisms of the MMP-1 gene in gastric cancer with a MALDI-TOF MS method in a large northern Chinese case-controlled cohort. Our results indicated that these seven SNPs of MMP-1 might not be useful as significant markers to predict gastric cancer susceptibility, progression or prognosis, at least in the Han population in northern China.

]]>
<![CDATA[Genetic Variations in Key MicroRNA Processing Genes and Risk of Head and Neck Cancer: A Case-Control Study in Chinese Population]]> https://www.researchpad.co/article/5989da71ab0ee8fa60b94ca6

MicroRNAs (miRNAs) have been reported to play a key role in oncogenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the miRNA-mRNA interactions, hence promoting tumorigenesis. In the present study, we hypothesized that potentially functional polymorphisms in miRNA processing genes may contribute to head and neck cancer (HNC) susceptibility. To test this hypothesis, we genotyped three SNPs at miRNA binding sites of miRNA processing genes (rs1057035 in 3′UTR of DICER, rs3803012 in 3′UTR of RAN and rs10773771 in 3′UTR of HIWI) with a case-control study including 397 HNC cases and 900 controls matched by age and sex in Chinese. Although none of three SNPs was significantly associated with overall risk of HNC, rs1057035 in 3′UTR of DICER was associated with a significantly decreased risk of oral cancer (TC/CC vs. TT: adjusted OR  = 0.65, 95% CI  = 0.46–0.92). Furthermore, luciferase activity assay showed that rs1057035 variant C allele led to significantly lower expression levels as compared to the T allele, which may be due to the relatively high inhibition of hsa-miR-574-3p on DICER mRNA. These findings indicated that rs1057035 located at 3′UTR of DICER may contribute to the risk of oral cancer by affecting the binding of miRNAs to DICER. Large-scale and well-designed studies are warranted to validate our findings.

]]>
<![CDATA[A Comprehensive Mapping of HIV-1 Genotypes in Various Risk Groups and Regions across China Based on a Nationwide Molecular Epidemiologic Survey]]> https://www.researchpad.co/article/5989db1dab0ee8fa60bce7a5

Background

China is experiencing a dynamic HIV/AIDS epidemic. While serology based surveillance systems have reported the spread of HIV/AIDS, detailed tracking of its transmission in populations and regions is not possible without mapping it at the molecular level. We therefore conducted a nationwide molecular epidemiology survey across the country.

Methods

HIV-1 genotypes were determined from 1,408 HIV-positive persons newly diagnosed in 2006. The prevalence of each genotype was estimated by weighting the genotype’s prevalence from each province- and risk-specific subpopulation with the number of reported cases in the corresponding subgroups in that year.

Results

CRF07_BC (35.5%), CRF01_AE (27.6%), CRF08_BC (20.1%), and subtype B' (9.6%) were the four main HIV-1 strains in China. CRF07_BC and CRF08_BC were the primary drivers of infection among injecting drug users in northeastern and southeastern China, respectively, and subtype B' remained dominant among former plasma donors in central China. In contrast, all four strains occurred in significant proportions among heterosexuals nationwide, pointing to an expansion of the HIV-1 epidemic from high-risk populations into the general population. CRF01_AE also replaced subtype B as the principal driver of infection among men-who-have-sex-with-men.

Conclusions

Our study provides the first comprehensive baseline data on the diversity and characteristics of HIV/AIDS epidemic in China, reflecting unique region- and risk group-specific transmission dynamics. The results provide information critical for designing effective prevention measures against HIV transmission.

]]>
<![CDATA[Leukocyte DNA Methylation Signature Differentiates Pancreatic Cancer Patients from Healthy Controls]]> https://www.researchpad.co/article/5989d9f2ab0ee8fa60b6efeb

Pancreatic adenocarcinoma (PaC) is one of most difficult tumors to treat. Much of this is attributed to the late diagnosis. To identify biomarkers for early detection, we examined DNA methylation differences in leukocyte DNA between PaC cases and controls in a two-phase study. In phase I, we measured methylation levels at 1,505 CpG sites in treatment-naïve leukocyte DNA from 132 never-smoker PaC patients and 60 never-smoker healthy controls. We found significant differences in 110 CpG sites (false discovery rate <0.05). In phase II, we tested and validated 88 of 96 phase I selected CpG sites in 240 PaC cases and 240 matched controls (p≤0.05). Using penalized logistic regression, we built a prediction model consisting of five CpG sites (IL10_P348, LCN2_P86, ZAP70_P220, AIM2_P624, TAL1_P817) that discriminated PaC patients from controls (C-statistic = 0.85 in phase I; 0.76 in phase II). Interestingly, one CpG site (LCN2_P86) alone could discriminate resectable patients from controls (C-statistic  = 0.78 in phase I; 0.74 in phase II). We also performed methylation quantitative trait loci (methQTL) analysis and identified three CpG sites (AGXT_P180_F, ALOX12_E85_R, JAK3_P1075_R) where the methylation levels were significantly associated with single nucleotide polymorphisms (SNPs) (false discovery rate <0.05). Our results demonstrate that epigenetic variation in easily obtainable leukocyte DNA, manifested by reproducible methylation differences, may be used to detect PaC patients. The methylation differences at certain CpG sites are partially attributable to genetic variation. This study strongly supports future epigenome-wide association study using leukocyte DNA for biomarker discovery in human diseases.

]]>
<![CDATA[Molecular Evidence for the Thriving of Campylobacter jejuni ST-4526 in Japan]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba77f5

Campylobacter jejuni is a leading cause of human gastroenteritis worldwide. This study aimed at a better understanding of the genetic diversity of this pathogen disseminated in Japan. We performed multilocus sequence typing (MLST) of Campylobacter jejuni isolated from different sources (100 human, 61 poultry, and 51 cattle isolates) in Japan between 2005 and 2006. This approach identified 62 sequence types (STs) and 19 clonal complexes (CCs), including 11 novel STs. These 62 STs were phylogenetically divided into 6 clusters, partially exhibiting host association. We identified a novel ST (ST-4526) that has never been reported in other countries; a phylogenetic analysis showed that ST-4526 and related STs showed distant lineage from the founder ST, ST-21 within CC-21. Comparative genome analysis was performed to investigate which properties could be responsible for the successful dissemination of ST-4526 in Japan. Results revealed that three representative ST-4526 isolates contained a putative island comprising the region from Cj0737 to Cj0744, which differed between the ST-4526 isolates and the reference strain NCTC11168 (ST-43/CC-21). Amino acid sequence alignment analyses showed that two of three ST-4526 isolates expressed 693aa- filamentous hemagglutination domain protein (FHA), while most of other C. jejuni strains whose genome were sequenced exhibited its truncation. Correspondingly, host cell binding of FHA-positive C. jejuni was greater than that of FHA-truncated strains, and exogenous administration of rFHA protein reduced cell adhesion of FHA-positive bacteria. Biochemical assays showed that this putative protein exhibited a dose-dependent binding affinity to heparan sulfate, indicating its adhesin activity. Moreover, ST-4526 showed increased antibiotic-resistance (nalidixic acid and fluoroquinolones) and a reduced ability for DNA uptake. Taken together, our data suggested that these combined features contributed to the clonal thriving of ST-4526 in Japan.

]]>
<![CDATA[Changes in Poly(ADP-Ribosyl)ation Patterns in Workers Exposed to BTX]]> https://www.researchpad.co/article/5989daf7ab0ee8fa60bc348f

Occupational exposure to (benzene, toluene and xylene, BTX is common in the Chinese workplace. Chronic occupational exposure to benzene is associated with an increased risk of hematological malignancies such as acute myeloid leukemia (AML), but the underlying mechanisms are still unclear. This study investigates changes in poly(ADP-ribosyl)ation and DNA methylation in subjects occupationally exposed to a BTX. Blood DNA samples and exposure data were obtained from subjects with different levels of exposure, including 132 decorators, 129 painters, and 130 unexposed referents in a container-manufacturing factory in Shenzhen, China. Occupational exposure assessment included personal monitoring of airborne benzene, toluene and xylene. Hematological parameters were measured and the cytokinesis-block micronucleus (CBMN) assay was used to detect DNA damage in peripheral lymphocytes. Quantitative real-time PCR was used to detect the mRNA expression of poly(ADP-ribose) polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG), DNA methyltransferases (DNMTs) including DNMT1, DNMT3a and DNMT3b, methyl-CpG-binding domain protein 2(MBD2). PARP1 assay was used to measure PARP activity. Airborne levels of benzene, toluene and xylene in the two exposed groups were significantly higher than those of controls (P<0.001). The two exposed groups (decorators, painters) showed decreased PARP1, DNMTs and MBD2 expression relative to controls (P<0.05), and PARP activity was also decreased (P<0.05). Decreased PARP1, DNMT1, DNMT3a, DNMT3b and MBD2 mRNA expression was correlated with increased airborne BTX (Pearson's r: −0.587, −0.314, −0.636, −0.567 and −0.592 respectively, P<0.001). No significant differences in hematological parameters and CBMN were found among the three groups. Together, these results suggest that decreased DNMTs, MBD2 and PARP1 might be involved in the global hypomethylation associated with BTX exposure, and the imbalance of PARP/PARG might participate in the down-regulation of DNMTs. This is the first human study to link altered poly(ADP-ribosyl)ation patterns, which reproduce the aberrant epigenetic patterns found in benzene-treated cells, to chronic occupational exposure to BTX.

]]>
<![CDATA[Interaction between Genetic Predisposition to Adiposity and Dietary Protein in Relation to Subsequent Change in Body Weight and Waist Circumference]]> https://www.researchpad.co/article/5989db49ab0ee8fa60bd99ab

Background

Genetic predisposition to adiposity may interact with dietary protein in relation to changes of anthropometry.

Objective

To investigate the interaction between genetic predisposition to higher body mass index (BMI), waist circumference (WC) or waist-hip ratio adjusted for BMI (WHRBMI) and dietary protein in relation to subsequent change in body weight (ΔBW) or change in WC (ΔWC).

Design

Three different Danish cohorts were used. In total 7,054 individuals constituted the study population with information on diet, 50 single-nucleotide polymorphisms (SNPs) associated with BMI, WC or WHRBMI, as well as potential confounders. Mean follow-up time was ∼5 years. Four genetic predisposition-scores were based on the SNPs; a complete-score including all selected adiposity- associated SNPs, and three scores including BMI, WC or WHRBMI associated polymorphisms, respectively. The association between protein intake and ΔBW or ΔWC were examined and interactions between SNP-score and protein were investigated. Analyses were based on linear regressions using macronutrient substitution models and meta-analyses.

Results

When protein replaced carbohydrate, meta-analyses showed no associations with ΔBW (41.0 gram/y/5 energy% protein, [95% CI: −32.3; 114.3]) or ΔWC (<−0.1 mm/y/5 energy % protein, [−1.1; 1.1]). Similarly, there were no interactions for any SNP-scores and protein for either ΔBW (complete SNP-score: 1.8 gram/y/5 energy% protein/risk allele, [−7.0; 10.6]) or ΔWC (complete SNP-score: <0.1 mm/y/5 energy% protein/risk allele, [−0.1; 0.1]). Similar results were seen when protein replaced fat.

Conclusion

This study indicates that the genetic predisposition to general and abdominal adiposity, assessed by gene-scores, does not seem to modulate the influence of dietary protein on ΔBW or ΔWC.

]]>
<![CDATA[Genetic Variation in MDM2 and p14ARF and Susceptibility to Salivary Gland Carcinoma]]> https://www.researchpad.co/article/5989d9e5ab0ee8fa60b6aead

Background

The p14ARF/MDM2/p53 pathway plays an important role in modulation of DNA damage and oxidative stress responses. The aim of this study was to determine whether genetic variants in MDM2 and p14ARF are associated with risk of salivary gland carcinoma (SGC).

Methods

Four single nucleotide polymorphisms (SNPs) in MDM2 and p14ARF (MDM2-rs2279744, MDM2-rs937283, p14ARF-rs3731217, and p14ARF-rs3088440) were genotyped in 156 patients with SGC and 511 cancer-free controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs).

Results

MDM2-rs2279744 was significantly associated with a moderately increased risk of SGC (OR, 1.5, 95% CI, 1.1–2.2). There was a trend toward significantly increased SGC risk with increasing number of risk genotypes of the four polymorphisms (Ptrend = 0.004). Individuals carrying 3–4 risk genotypes in MDM2 and p14ARF were at increased SGC risk (OR, 2.0, 95% CI, 1.1–2.7) compared with individuals carrying 0–2 risk genotypes. Moreover, the combined effect of risk genotypes of MDM2 and p14ARF was more pronounced among young subjects (≤45 years), female subjects, subjects with race/ethnicity other than non-Hispanic white, ever-smokers, and ever-drinkers.

Conclusion

Our results support the involvement of SNPs of MDM2 and p14ARF, either alone or more likely in combination, in susceptibility to SGC. Larger studies are needed to validate our findings.

]]>
<![CDATA[Transmitted Antiretroviral Drug Resistance in New York State, 2006-2008: Results from a New Surveillance System]]> https://www.researchpad.co/article/5989da29ab0ee8fa60b81cfa

Background

HIV transmitted drug resistance (TDR) is a public health concern because it has the potential to compromise antiretroviral therapy (ART) at the population level. In New York State, high prevalence of TDR in a local cohort and a multiclass resistant case cluster led to the development and implementation of a statewide resistance surveillance system.

Methodology

We conducted a cross-sectional analysis of the 13,109 cases of HIV infection that were newly diagnosed and reported in New York State between 2006 and 2008, including 4,155 with HIV genotypes drawn within 3 months of initial diagnosis and electronically reported to the new resistance surveillance system. We assessed compliance with DHHS recommendations for genotypic resistance testing and estimated TDR among new HIV diagnoses.

Principal Findings

Of 13,109 new HIV diagnoses, 9,785 (75%) had laboratory evidence of utilization of HIV-related medical care, and 4,155 (43%) had a genotype performed within 3 months of initial diagnosis. Of these, 11.2% (95% confidence interval [CI], 10.2%–12.1%) had any evidence of TDR. The proportion with mutations associated with any antiretroviral agent in the NNRTI, NRTI or PI class was 6.3% (5.5%–7.0%), 4.3% (3.6%–4.9%) and 2.9% (2.4%–3.4%), respectively. Multiclass resistance was observed in <1%. TDR did not increase significantly over time (p for trend = 0.204). Men who have sex with men were not more likely to have TDR than persons with heterosexual risk factor (OR 1.0 (0.77–1.30)). TDR to EFV+TDF+FTC and LPV/r+TDF+FTC regimens was 7.1% (6.3%–7.9%) and 1.4% (1.0%–1.8%), respectively.

Conclusions/Significance

TDR appears to be evenly distributed and stable among new HIV diagnoses in New York State; multiclass TDR is rare. Less than half of new diagnoses initiating care received a genotype per DHHS guidelines.

]]>