ResearchPad - genetic-interference Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle <i>Tribolium castaneum</i>]]> Vertebrate parathyroid hormone (PTH) and its receptors have been extensively studied with respect to their function in bone remodeling and calcium metabolism. Insect parathyroid hormone receptors (iPTHRs) have been previously described as counterparts of vertebrate PTHRs, however, they are still orphan receptors for which the authentic ligands and biological functions remain unknown. We describe an insect form of parathyroid hormone (iPTH) by analyzing its interactions with iPTHRs. Identification of this new insect peptidergic system proved that the PTH system is an ancestral signaling system dating back to the evolutionary time before the divergence of protostomes and deuterostomes. We also investigated the functions of the iPTH system in a model beetle Tribolium castaneum by using RNA interference. RNA interference of iPTHR resulted in defects in wing exoskeleton maturation and fecundity. Based on the differential gene expression patterns and the phenotype induced by RNAi, we propose that the iPTH system is likely involved in the regulation of exoskeletal cuticle formation and fecundity in insects.

<![CDATA[Mapping the coevolution, leadership and financing of research on viral vectors, RNAi, CRISPR/Cas9 and other genomic editing technologies]]>

Genomic editing technologies are developing rapidly, promising significant developments for biomedicine, agriculture and other fields. In the present investigation, we analyzed and compared the process of innovation for six genomic technologies: viral vectors, RNAi, TALENs, meganucleases, ZFNs and CRISPR/Cas including the profile of the main research institutions and their funders, to understand how innovation evolved and what institutions influenced research trajectories. A Web of Science search of papers on viral vectors RNAi, CRISPR/Cas, TALENs, ZFNs and meganucleases was used to build a citation network of 16,746 papers. An analysis of network clustering combined with text mining was performed. For viral vectors, a long-term process of incremental innovation was identified, which was largely publicly funded in the United States and the European Union. The trajectory of RNAi research included clusters related to the study of RNAi as a biological phenomenon and its use in functional genomics, biomedicine and pest control. A British philanthropic organization and a US pharmaceutical company played a key role in the development of basic RNAi research and clinical application respectively, in addition to government and academic institutions. In the case of CRISPR/Cas research, basic science discoveries led to the technical improvements, and these two in turn provided the information required for the development of biomedical, agricultural, livestock and industrial applications. The trajectory of CRISPR/Cas research exhibits a geopolitical division of the investigation efforts between the US, as the main producer and funder of basic research and technical improvements, and Chinese research institutions increasingly leading applied research. Our results reflect a change in the model for financing science, with reduced public financing for basic science and applied research on publicly funded technological developments in the US, and the emergence of China as a scientific superpower, with implications for the development of applications of genomic technologies.

<![CDATA[Restoration of Mal overcomes the defects of apoptosis in lung cancer cells]]>

Background and aims

Cancer is one of the life-threatening diseases of human beings; the pathogenesis of cancer remains to be further investigated. Toll like receptor (TLR) activities are involved in the apoptosis regulation. This study aims to elucidate the role of Mal (MyD88-adapter-like) molecule in the apoptosis regulation of lung cancer (LC) cells.


The LC tissues were collected from LC patients. LC cells and normal control (NC) cells were isolated from the tissues and analyzed by pertinent biochemical and immunological approaches.


We found that fewer apoptotic LC cells were induced by cisplatin in the culture as compared to NC cells. The expression of Fas ligand (FasL) was lower in LC cells than that in NC cells. FasL mRNA levels declined spontaneously in LC cells. A complex of FasL/TDP-43 was detected in LC cells. LC cells expressed less Mal than NC cells. Activation of Mal by lipopolysaccharide (LPS) increased TDP-43 expression in LC cells. TDP-43 formed a complex with FasL mRNA to prevent FasL mRNA from decay. Reconstitution of Mal or TDP-43 restored the sensitiveness of LC cells to apoptotic inducers.


LC cells express low Mal levels that contributes to FasL mRNA decay through impairing TDP-43 expression. Reconstitution of Mal restores sensitiveness of LC cells to apoptosis inducers that may be a novel therapeutic approach for LC treatment.

<![CDATA[Na+/H+ exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis]]>

Na+/H+ exchangers are the most common membrane proteins involved in the regulation of intracellular pH that concurrently transport Na+ into the cells and H+ out of the cells. In this study, the full-length cDNA of the Na+/H+ exchanger (NHE) from the Pacific white shrimp (Litopenaeus vannamei) was cloned. The LvNHE cDNA is 3167 bp long, contains a 5’-untranslated region (UTR) of 74 bp and a 3’-UTR of 456 bp and an open reading frame (ORF) of 2637 bp, coding for a protein of 878 amino acids with 11 putative transmembrane domains and a long cytoplasmic tail. LvNHE shows high sequence homology with mud crab NHE at the amino acid level. LvNHE mRNA was detected in the hepatopancreas, gill, eyestalk, skin, heart, intestine, muscle, brain and stomach, with the highest abundance in the intestine. In the shrimp intestinal fragment cultures exposed to gradually declining pH medium (from pH 8.0 to pH 6.4), the LvNHE mRNA expression was significantly stimulated, with the highest response when incubated in pH 7.0 medium for 6 h. To investigate the functional roles of LvNHE in pH regulation at the physiological and cellular levels, the LvNHE mRNA expression was silenced by siRNA knockdown. Upon low-pH challenge, the hemolymph pH was significantly reduced in the LvNHE mRNA knockdown shrimp. In addition, knockdown of LvNHE mRNA reduced the recovery capacity of intracellular pH in intestinal fragment cultures after acidification. Altogether, this study demonstrates the role of NHE in shrimp response to low pH stress and provides new insights into the acid/base homeostasis mechanisms of crustaceans.

<![CDATA[The polymeric immunoglobulin receptor-like protein from Marsupenaeus japonicus is a receptor for white spot syndrome virus infection]]>

Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway.

<![CDATA[Drosophila ZDHHC8 palmitoylates scribble and Ras64B and controls growth and viability]]>

Palmitoylation is an important posttranslational modification regulating diverse cellular functions. Consequently, aberrant palmitoylation can lead to diseases such as neuronal disorders or cancer. In humans there are roughly one hundred times more palmitoylated proteins than enzymes catalyzing palmitoylation (palmitoyltransferases). Therefore, it is an important challenge to establish the links between palmitoyltransferases and their targets. From publicly available data, we find that expression of human ZDHHC8 correlates significantly with cancer survival. To elucidate the organismal function of ZDHHC8, we study the Drosophila ortholog of hZDHHC8, CG34449/dZDHHC8. Knockdown of dZDHHC8 causes tissue overgrowth while dZDHHC8 mutants are larval lethal. We provide a list of 159 palmitoylated proteins in Drosophila and present data suggesting that scribble and Ras64B are targets of dZDHHC8.

<![CDATA[Early girl is a novel component of the Fat signaling pathway]]>

The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway.

<![CDATA[Heme peroxidase HPX-2 protects Caenorhabditis elegans from pathogens]]>

Heme-containing peroxidases are important components of innate immunity. Many of them functionally associate with NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes by using the hydrogen peroxide they generate in downstream reactions. Caenorhabditis elegans encodes for several heme peroxidases, and in a previous study we identified the ShkT-containing peroxidase, SKPO-1, as necessary for pathogen resistance. Here, we demonstrated that another peroxidase, HPX-2 (Heme-PeroXidase 2), is required for resistance against some, but not all pathogens. Tissue specific RNA interference (RNAi) revealed that HPX-2 functionally localizes to the hypodermis of the worm. In congruence with this observation, hpx-2 mutant animals possessed a weaker cuticle structure, indicated by higher permeability to a DNA dye, but exhibited no obvious morphological defects. In addition, fluorescent labeling of HPX-2 revealed its expression in the pharynx, an organ in which BLI-3 is also present. Interestingly, loss of HPX-2 increased intestinal colonization of E. faecalis, suggesting its role in the pharynx may limit intestinal colonization. Moreover, disruption of a catalytic residue in the peroxidase domain of HPX-2 resulted in decreased survival on E. faecalis, indicating its peroxidase activity is required for pathogen resistance. Finally, RNA-seq analysis of an hpx-2 mutant revealed changes in genes encoding for cuticle structural components under the non-pathogenic conditions. Under pathogenic conditions, genes involved in infection response were differentially regulated to a greater degree, likely due to increased microbial burden. In conclusion, the characterization of the heme-peroxidase, HPX-2, revealed that it contributes to C. elegans pathogen resistance through a role in generating cuticle material in the hypodermis and pharynx.

<![CDATA[Hormonal signaling cascades required for phototaxis switch in wandering Leptinotarsa decemlineata larvae]]>

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.

<![CDATA[Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster]]>

Meiotic recombination, which is necessary to ensure that homologous chromosomes segregate properly, begins with the induction of meiotic DNA double-strand breaks (DSBs) and ends with the repair of a subset of those breaks into crossovers. Here we investigate the roles of two paralogous genes, CG12200 and CG31053, which we have named Narya and Nenya, respectively, due to their relationship with a structurally similar protein named Vilya. We find that narya recently evolved from nenya by a gene duplication event, and we show that these two RING finger domain-containing proteins are functionally redundant with respect to a critical role in DSB formation. Narya colocalizes with Vilya foci, which are known to define recombination nodules, or sites of crossover formation. A separation-of-function allele of narya retains the capacity for DSB formation but cannot mature those DSBs into crossovers. We further provide data on the physical interaction of Narya, Nenya and Vilya, as assayed by the yeast two-hybrid system. Together these data support the view that all three RING finger domain-containing proteins function in the formation of meiotic DNA DSBs and in the process of crossing over.

<![CDATA[<i>PLoS Biology</i> Issue Image | Vol. 17(1) January 2019]]>

Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes

Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Using RNA interference to screen mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), Isoe et al. identified the eggshell organizing factor 1 (EOF1) protein as playing an essential role in eggshell melanization and embryonic development. Nearly 100% of the eggs laid by EOF1-deficient females had a defective eggshell and were non-viable. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus, a carrier of Zika virus and dengue fever. The image shows a scanning electron micrograph of a small region (about 20 µm across) of the shell from a normal Aedes aegypti egg.

Image Credit: pbio.3000068

<![CDATA[Deep learning image recognition enables efficient genome editing in zebrafish by automated injections]]>

One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 μm to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research.

<![CDATA[Formation of high molecular weight p62 by CORM-3]]>

CORM-3 is a water-soluble carbon monoxide (CO)-releasing molecule developed for possible therapeutic use of CO. CORM-3 belongs to a group of metal carbonyl compounds that contain transition metals and carbonyls as the central scaffold and coordinated ligands, respectively. CORM-3 has been reported to be reactive with many proteins in eukaryotes including mammals. Among them, several extracellular proteins, such as lysozyme, as well as plasma albumin and fibronectin, have been shown to interact directly with CORM-3. p62 is an intracellular adaptor protein required for targeting ubiquitinated (Ub) proteins to lysosomal degradation through autophagy. p62 has been shown to undergo self-oligomerization via covalent crosslinking in response to treatment with verteporfin, a benzoporphyrin derivative used for photodynamic therapy. Here we show that CORM-3 also interacts directly with p62. When applied to mouse embryonic fibroblasts (MEFs) at a high concentration (1 mM), CORM-3 causes the formation of reduction- and detergent-resistant high molecular weight (HMW)-p62. HMW-p62 accumulates more in atg5-/- MEFs than in wild type (WT) MEFs, showing the elimination of HMW-p62 through autophagy. HMW-p62 is also generated in H9c2 rat cardiomyoblastoma as well as A549 human alveolar epithelial cells, suggesting that HMW-p62 formation is not specific to MEFs, but, rather, is a general event in mammalian cells. HMW-p62 formation by CORM-3 can be reproduced using purified p62 in vitro, demonstrating the direct interaction between CORM-3 and p62. These results show that p62 is a CORM-3-interactive intracellular protein.

<![CDATA[Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes]]>

Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors.

<![CDATA[Stress-responsive and metabolic gene regulation are altered in low S-adenosylmethionine]]>

S-adenosylmethionine (SAM) is a donor which provides the methyl groups for histone or nucleic acid modification and phosphatidylcholine production. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in H3K4 trimethylation (H3K4me3) at pathogen-response genes, decreasing their expression and limiting pathogen resistance. We hypothesized that SAM may be generally required for stress-responsive transcription. Here, using genetic assays, we show that transcriptional responses to bacterial or xenotoxic stress fail in C. elegans with low SAM, but that expression of heat shock genes are unaffected. We also found that two H3K4 methyltransferases, set-2/SET1 and set-16/MLL, had differential responses to survival during stress. set-2/SET1 is specifically required in bacterial responses, whereas set-16/MLL is universally required. These results define a role for SAM in the acute stress-responsive gene expression. Finally, we find that modification of metabolic gene expression correlates with enhanced survival during stress.

<![CDATA[Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster]]>

Loss of gut integrity is linked to various human diseases including inflammatory bowel disease. However, the mechanisms that lead to loss of barrier function remain poorly understood. Using D. melanogaster, we demonstrate that dietary restriction (DR) slows the age-related decline in intestinal integrity by enhancing enterocyte cellular fitness through up-regulation of dMyc in the intestinal epithelium. Reduction of dMyc in enterocytes induced cell death, which leads to increased gut permeability and reduced lifespan upon DR. Genetic mosaic and epistasis analyses suggest that cell competition, whereby neighboring cells eliminate unfit cells by apoptosis, mediates cell death in enterocytes with reduced levels of dMyc. We observed that enterocyte apoptosis was necessary for the increased gut permeability and shortened lifespan upon loss of dMyc. Furthermore, moderate activation of dMyc in the post-mitotic enteroblasts and enterocytes was sufficient to extend health-span on rich nutrient diets. We propose that dMyc acts as a barometer of enterocyte cell fitness impacting intestinal barrier function in response to changes in diet and age.

<![CDATA[RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides]]>

The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs.

<![CDATA[A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster]]>

Octopamine regulates feeding behavioral responses in Drosophila melanogaster, however the molecular and circuit mechanisms have not been fully elucidated. Here, we investigated the role of a subset of octopaminergic neurons, the OA-VPM4 cluster, in sucrose acceptance behavior. Thermogenetic activation of Gal4 lines containing OA-VPM4 promoted proboscis extension to sucrose, while optogenetic inactivation reduced extension. Anatomically, the presynaptic terminals of OA-VPM4 are in close proximity to the axons of sugar-responsive gustatory sensory neurons. Moreover, RNAi knockdown of a specific class of octopamine receptor, OAMB, selectively in sugar-sensing gustatory neurons decreased the behavioral response to sucrose. By calcium imaging experiments, we found that application of octopamine potentiates sensory responses to sucrose in satiated flies. Taken together, these findings suggest a model by which OA-VPM4 promotes feeding behavior by modulating the activity of sensory neurons.

<![CDATA[The long and short of lifespan regulation by Argonautes]]> ]]> <![CDATA[The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis]]>

Sandflies are well known vectors for Leishmania but also transmit a number of arthropod-borne viruses (arboviruses). Few studies have addressed the interaction between sandflies and arboviruses. RNA interference (RNAi) mechanisms utilize small non-coding RNAs to regulate different aspects of host-pathogen interactions. The small interfering RNA (siRNA) pathway is a broad antiviral mechanism in insects. In addition, at least in mosquitoes, another RNAi mechanism mediated by PIWI interacting RNAs (piRNAs) is activated by viral infection. Finally, endogenous microRNAs (miRNA) may also regulate host immune responses. Here, we analyzed the small non-coding RNA response to Vesicular stomatitis virus (VSV) infection in the sandfly Lutzoymia longipalpis. We detected abundant production of virus-derived siRNAs after VSV infection in adult sandflies. However, there was no production of virus-derived piRNAs and only mild changes in the expression of vector miRNAs in response to infection. We also observed abundant production of virus-derived siRNAs against two other viruses in Lutzomyia Lulo cells. Together, our results suggest that the siRNA but not the piRNA pathway mediates an antiviral response in sandflies. In agreement with this hypothesis, pre-treatment of cells with dsRNA against VSV was able to inhibit viral replication while knock-down of the central siRNA component, Argonaute-2, led to increased virus levels. Our work begins to elucidate the role of RNAi mechanisms in the interaction between L. longipalpis and viruses and should also open the way for studies with other sandfly-borne pathogens.