ResearchPad - genomics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs]]> https://www.researchpad.co/article/elastic_article_12490 RNA interference (RNAi) is a powerful gene silencing technology, widely used in analyses of reverse genetics, development of therapeutic strategies and generation of biotechnological products. Here we present a free software tool for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD). SSD incorporates our previously developed software Strand Analysis to construct template DNAs amenable for the large scale production of mono-, bi- and trivalent multimeric shRNAs, via in vitro rolling circle transcription. We tested SSD by creating a trivalent multimeric shRNA against the vitellogenin gene of Apis mellifera. RT-qPCR analysis revealed that our molecule promoted a decrease in more than 50% of the target mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD software allows the easy design of multimeric shRNAs, for single or multiple simultaneous knockdowns, which is especially interesting for studies involving large amounts of double-stranded molecules.

]]>
<![CDATA[Metabarcoding reveals that a non-nutritive sweetener and sucrose yield similar gut microbiota patterns in Wistar rats]]> https://www.researchpad.co/article/elastic_article_12460 The effects of non-nutritive sweeteners (NNS) on the gut microbiota are an area of increasing research interest due to their potential influence on weight gain, insulin resistance, and inflammation. Studies have shown that mice and rats fed saccharin develop weight gain and metabolic alterations, possibly related to changes in gut microbiota. Here, we hypothesized that chronic exposure to a commercial NNS would change the gut microbiota composition in Wistar rats when compared to sucrose exposure. To test this hypothesis, Wistar rats were fed either NNS- or sucrose-supplemented yogurt for 17 weeks alongside standard chow (ad libitum). The gut microbiome was assessed by 16S rDNA deep sequencing. Assembly and quantification were conducted using the Brazilian Microbiome Project pipeline for Ion Torrent data with modifications. Statistical analyses were performed in the R software environment. We found that chronic feeding of a commercial NNS-sweetened yogurt to Wistar rats, within the recommended dose range, did not significantly modify gut microbiota composition in comparison to sucrose-sweetened yogurt. Our findings do not support the hypothesis that moderate exposure to NNS is associated with changes in gut microbiota pattern compared to sucrose, at least in this experimental model.

]]>
<![CDATA[Methodological differences can affect sequencing depth with a possible impact on the accuracy of genetic diagnosis]]> https://www.researchpad.co/article/elastic_article_12440 For a better interpretation of variants, evidence-based databases, such as ClinVar, compile data on the presumed relationships between variants and phenotypes. In this study, we aimed to analyze the pattern of sequencing depth in variants from whole-exome sequencing data in the 1000 Genomes project phase 3, focusing on the variants present in the ClinVar database that were predicted to affect protein-coding regions. We demonstrate that the distribution of the sequencing depth varies across different sequencing centers (pair-wise comparison, p < 0.001). Most importantly, we found that the distribution pattern of sequencing depth is specific to each facility, making it possible to correctly assign 96.9% of the samples to their sequencing center. Thus, indicating the presence of a systematic bias, related to the methods used in the different facilities, which generates significant variations in breadth and depth in whole-exome sequencing data in clinically relevant regions. Our results show that methodological differences, leading to significant heterogeneity in sequencing depth, may potentially influence the accuracy of genetic diagnosis. Furthermore, our findings highlight how it is still challenging to integrate results from different sequencing centers, which may also have an impact on genomic research.

]]>
<![CDATA[Boundaries in metagenomic screenings using <i>lac</i>Zα-based vectors]]> https://www.researchpad.co/article/elastic_article_12436 Metagenomics approaches have been of high relevance for providing enzymes used in diverse industrial applications. In the current study, we have focused on the prospection of protease and glycosyl hydrolase activities from a soil sample by using the lacZα -based plasmid pSEVA232. For this, we used a functional screen based on skimmed milk agar and a pH indicator dye for detection of both enzymes, as previously reported in literature. Although we effectively identified positive clones in the screenings, subsequent experiments revealed that this phenotype was not because of the hydrolytic activity encoded in the metagenomic fragments, but rather due to the insertion of small metagenomic DNA fragments in frame within the coding region of the lacZ gene present in the original vector. Analyses of the thermodynamic stability of mRNA secondary structures indicated that recovering of positive clones was probably due to higher expression levels of the chimeric lacZα-genes in respect to the original from empty vector. We concluded that this method has a higher tendency for recovery false positive clones, when used in combination with a lacZα-based vector. As these vectors are massively used in functional metagenomic screenings, we highlight the importance of reporting boundaries in established metagenomic screenings methodologies.

]]>
<![CDATA[Identification of LincRNA from <i>Dermatophagoides farinae</i> (Acari: Pyroglyphidae) for Potential Allergen-Related Targets]]> https://www.researchpad.co/article/elastic_article_12423 Long noncoding RNAs (lncRNAs), especially their important subclass of long intergenic noncoding RNAs (lincRNAs), have been identified in some insects. They play important roles in the regulation of biological processes, such as immune response or cell differentiation and as possible evolutionary precursors for protein coding genes. House dust mites (HDMs) are recognized as allergenic mites because allergens are found in their feces and bodies. Dermatophagoides farinae is one of the most important pyroglyphid mites because of its abundance in the household. To determine if lincRNAs can regulate allergen presentation in HDMs, we analyzed RNA-seq data for HDMs. We identified 11 lincRNAs that are related to mRNAs coding for allergens in HDMs. Using qRT-PCR, we amplified 10 lincRNAs and their putative target allergen-encoding mRNAs, confirming expression of these lincRNAs and allergen genes. The results suggest that lincRNAs might be involved in the regulation of allergen production in HDMs and might represent potential acaricidal candidates to inhibit mite allergen production.

]]>
<![CDATA[Transcriptional regulators and regulatory pathways involved in prostate gland adaptation to a hypoandrogen environment]]> https://www.researchpad.co/article/elastic_article_12401 Anti-androgen therapies, including orchiectomy, are effective at promoting prostate cancer remission, but are followed by progression to the more aggressive castration-resistant prostate cancer (CRPC). Castration promotes gland and tumor shrinkage. However, prostate adaptation to androgen deprivation involves striking parallel events, all requiring changes in gene expression. We hypothesized that transcription factors (TF) and other transcription-related genes are needed to orchestrate those changes. In this work, downstream analysis using bioinformatic tools and published microarray data allowed us to identify sixty transcriptional regulators (including 10 TF) and to integrate their function in physiologically relevant networks. Functional associations revealed a connection between Arnt, Bhlhe41 and Dbp circadian rhythm genes with the Ar circuitry and a small gene network centered in Pex14, which might indicate a previously unanticipated metabolic shift. We have also identified human homologs and mapped the corresponding genes to human chromosome regions commonly affected in prostate cancer, with particular attention to the PTEN/HHEX/MXI1 cluster at 10q23-25 (frequently deleted in PCa) and to MAPK1 at 22q11.21 (delete in intermediate risk but not in high risk PCa). Twenty genes were found mutated or with copy number alterations in at least five percent of three cancer cohorts and six of them (PHOX2A, NFYC, EST2, EIF2S1, SSRP1 and PARP1) associated with impacted patient survival. These changes are specific to the adaptation to the hypoandrogen environment and seem important for the progression to CRPC when mutated.

]]>
<![CDATA[Identification of Milk and Cheese Intake Biomarkers in Healthy Adults Reveals High Interindividual Variability of Lewis System–Related Oligosaccharides]]> https://www.researchpad.co/article/elastic_article_12376 The use of biomarkers of food intake (BFIs) in blood and urine has shown great promise for assessing dietary intake and complementing traditional dietary assessment tools whose use is prone to misreporting.ObjectiveUntargeted LC-MS metabolomics was applied to identify candidate BFIs for assessing the intake of milk and cheese and to explore the metabolic response to the ingestion of these foods.MethodsA randomized controlled crossover study was conducted in healthy adults [5 women, 6 men; age: 23.6 ± 5.0 y; BMI (kg/m2): 22.1 ± 1.7].  After a single isocaloric intake of milk (600 mL), cheese (100 g), or soy-based drink (600 mL), serum and urine samples were collected postprandially up to 6 h and after fasting after 24 h. Untargeted metabolomics was conducted using LC-MS. Discriminant metabolites were selected in serum by multivariate statistical analysis, and their mass distribution and postprandial kinetics were compared.ResultsSerum metabolites discriminant for cheese intake had a significantly lower mass distribution than metabolites characterizing milk intake (P = 4.1 × 10−4). Candidate BFIs for milk or cheese included saccharides, a hydroxy acid, amino acids, amino acid derivatives, and dipeptides. Two serum oligosaccharides, blood group H disaccharide (BGH) and Lewis A trisaccharide (LeA), specifically reflected milk intake but with high interindividual variability. The 2 oligosaccharides showed related but opposing trends: subjects showing an increase in either oligosaccharide did not show any increase in the other oligosaccharide. This result was confirmed in urine.ConclusionsNew candidate BFIs for milk or cheese could be identified in healthy adults, most of which were related to protein metabolism. The increase in serum of LeA and BGH after cow-milk intake in adults calls for further investigations considering the beneficial health effects on newborns of such oligosaccharides in maternal milk. The trial is registered at clinicaltrials.gov as NCT02705560. ]]> <![CDATA[Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae]]> https://www.researchpad.co/article/elastic_article_11231 In Rubiaceae phylogenetics, the number of markers often proved a limitation with authors failing to provide well-supported trees at tribal and generic levels. A robust phylogeny is a prerequisite to study the evolutionary patterns of traits at different taxonomic levels. Advances in next-generation sequencing technologies have revolutionized biology by providing, at reduced cost, huge amounts of data for an increased number of species. Due to their highly conserved structure, generally recombination-free, and mostly uniparental inheritance, chloroplast DNA sequences have long been used as choice markers for plant phylogeny reconstruction. The main objectives of this study are: 1) to gain insight in chloroplast genome evolution in the Rubiaceae (Ixoroideae) through efficient methodology for de novo assembly of plastid genomes; and, 2) to test the efficiency of mining SNPs in the nuclear genome of Ixoroideae based on the use of a coffee reference genome to produce well-supported nuclear trees. We assembled whole chloroplast genome sequences for 27 species of the Rubiaceae subfamily Ixoroideae using next-generation sequences. Analysis of the plastid genome structure reveals a relatively good conservation of gene content and order. Generally, low variation was observed between taxa in the boundary regions with the exception of the inverted repeat at both the large and short single copy junctions for some taxa. An average of 79% of the SNP determined in the Coffea genus are transferable to Ixoroideae, with variation ranging from 35% to 96%. In general, the plastid and the nuclear genome phylogenies are congruent with each other. They are well-resolved with well-supported branches. Generally, the tribes form well-identified clades but the tribe Sherbournieae is shown to be polyphyletic. The results are discussed relative to the methodology used and the chloroplast genome features in Rubiaceae and compared to previous Rubiaceae phylogenies.

]]>
<![CDATA[A comparison between SOLiD 5500XLand Ion Torrent PGM-derived miRNA expression profiles in two breast cell lines]]> https://www.researchpad.co/article/elastic_article_10869 Next-generation sequencing (NGS) platforms allow the analysis of hundreds of millions of molecules in a single sequencing run, revolutionizing many research areas. NGS-based microRNA studies enable expression quantification in unprecedented scale without the limitations of closed-platforms. Yet, whereas a massive amount of data produced by these platforms is available, comparisons of quantification/discovery capabilities between platforms are still lacking. Here we compare two NGS-platforms: SOLiD and PGM, by evaluating their microRNA identification/quantification capabilities using two breast-derived cell-lines. A high expression correlation (R2 > 0.9) was achieved, encompassing 97% of the miRNAs, and the few discrepancies in miRNA counts were attributable to molecules that have very low expression. Quantification divergences indicative of artefactual representation were seen for 14 miRNAs (higher in SOLiD-reads) and another 10 miRNAs more abundant in PGM-data. An inspection of these revealed an increased and statistically significant count of uracyls and uracyl-stretches for PGM-enriched miRNAs, compared to SOLiD and to the miRBase. In parallel, adenines and adenine-stretches were enriched for SOLiDderived miRNA reads. We conclude that, whereas both platforms are overall consistent and can be used interchangeably for microRNA expression studies, particular sequence features appear to be indicative of specific platform bias, and their presence in microRNAs should be considered for database-analyses.

]]>
<![CDATA[Cell Atlas technologies and insights into tissue architecture]]> https://www.researchpad.co/article/elastic_article_9194 Since Robert Hooke first described the existence of ‘cells’ in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.

]]>
<![CDATA[Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action]]> https://www.researchpad.co/article/elastic_article_9176 Identified five decades ago amongst the most abundant cellular RNAs, small nucleolar RNAs (snoRNAs) were initially described as serving as guides for the methylation and pseudouridylation of ribosomal RNA through direct base pairing. In recent years, however, increasingly powerful high-throughput genomic approaches and strategies have led to the discovery of many new members of the family and surprising diversity in snoRNA functionality and mechanisms of action. SnoRNAs are now known to target RNAs of many biotypes for a wider range of modifications, interact with diverse binding partners, compete with other binders for functional interactions, recruit diverse players to targets and affect protein function and accessibility through direct interaction. This mini-review presents the continuing characterization of the snoRNome through the identification of new snoRNA members and the discovery of their mechanisms of action, revealing a highly versatile noncoding family playing central regulatory roles and connecting the main cellular processes.

]]>
<![CDATA[Active Notch signaling is required for arm regeneration in a brittle star]]> https://www.researchpad.co/article/elastic_article_7845 Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.

]]>
<![CDATA[ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient <i>hsdRMS</i> restriction system broadening conjugation host range]]> https://www.researchpad.co/article/elastic_article_7739 Horizontal gene transfer is the main mechanism by which bacteria acquire and disseminate new traits, such as antibiotic resistance genes, that allow adaptation and evolution. Here we identified a gene, ardC, that enables a plasmid to increase its conjugative host range, and thus positively contributes to plasmid fitness. The crystal structure of the antirestriction protein ArdC revealed a fold different from other antirestriction proteins. Our results have wide implications for understanding how a gene enlarges the environments a plasmid can colonize and point to new targets to harness the bacterial DNA uptake control.

]]>
<![CDATA[Medusa: Software to build and analyze ensembles of genome-scale metabolic network reconstructions]]> https://www.researchpad.co/article/elastic_article_7734 Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles and perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org) and from github (https://github.com/opencobra/Medusa), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest.

]]>
<![CDATA[Personalized analysis of breast cancer using sample-specific networks]]> https://www.researchpad.co/article/elastic_article_8419 Breast cancer is a disease with high heterogeneity. Cancer is not usually caused by a single gene, but by multiple genes and their interactions with others and surroundings. Estimating breast cancer-specific gene–gene interaction networks is critical to elucidate the mechanisms of breast cancer from a biological network perspective. In this study, sample-specific gene–gene interaction networks of breast cancer samples were established by using a sample-specific network analysis method based on gene expression profiles. Then, gene–gene interaction networks and pathways related to breast cancer and its subtypes and stages were further identified. The similarity and difference among these subtype-related (and stage-related) networks and pathways were studied, which showed highly specific for subtype Basal-like and Stages IV and V. Finally, gene pairwise interactions associated with breast cancer prognosis were identified by a Cox proportional hazards regression model, and a risk prediction model based on the gene pairs was established, which also performed very well on an independent validation data set. This work will help us to better understand the mechanism underlying the occurrence of breast cancer from the sample-specific network perspective.

]]>
<![CDATA[Full-length transcriptome and targeted metabolome analyses provide insights into defense mechanisms of <i>Malus sieversii</i> against <i>Agrilus mali</i>]]> https://www.researchpad.co/article/elastic_article_8337 Malus sieversii is the wild progenitor for many cultivars of domesticated apple and an important germplasm resource for breeding. However, this valuable species faces a significant threat in the areas north of the Tianshan Mountains in China, by the invasion of Agrilus mali, a destructive pest of apple trees belonging to the family Buprestidae. Our preliminary study has has shown that there may be resistance to this insect in M. sieversii plants in the field, but the corresponding molecular mechanisms remain unclear. In this study, we compared the response of insect-resistant and insect-susceptible plants of M. sieversii to insect feeding using full-length transcriptome and targeted metabolome. 112,103 non-chimeric full-length reads (FLNC) totaling 10.52 Gb of data were generating with Pacific Biosciences SingleMolecule, Real-Time (PacBio SMRT) sequencing. A total of 130.06 Gb data of long reads were acquired with an Illumina HiSeq. Function annotation indicated that the different expressed genes (DEGs) were mainly involved in signal transduction pathway of plant hormones and in the synthesis of compounds such as terpenes, quinones, flavonoids, and jasmonic acid. Through targeted metabolome analysis resistant strains showed higher levels of trans-cinnamic acid, caffeine and ferulic acid after pest infestation. This study helps to decipher the transcriptional changes and related signaling paths in M. sieversii after an insect feeding, which lays a foundation for further research on molecular mechanisms of insect resistance in apples.

]]>
<![CDATA[Genome-wide identification and characterization of TCP family genes in <i>Brassica juncea</i> var. tumida]]> https://www.researchpad.co/article/elastic_article_8329 Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida.MethodsWe identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues.ResultsOf the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes.ConclusionWe performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida. ]]> <![CDATA[Transcriptomic changes across the life cycle of <i>Trypanosoma cruzi II</i>]]> https://www.researchpad.co/article/elastic_article_8327 Trypanosoma cruzi is a flagellated protozoan that causes Chagas disease; it presents a complex life cycle comprising four morphological stages: epimastigote (EP), metacyclic trypomastigote (MT), cell-derived trypomastigote (CDT) and amastigote (AM). Previous transcriptomic studies on three stages (EPs, CDTs and AMs) have demonstrated differences in gene expressions among them; however, to the best of our knowledge, no studies have reported on gene expressions in MTs. Therefore, the present study compared differentially expressed genes (DEGs), and signaling pathway reconstruction in EPs, MTs, AMs and CDTs. The results revealed differences in gene expressions in the stages evaluated; these differences were greater between MTs and AMs-PTs. The signaling pathway that presented the highest number of DEGs in all the stages was associated with ribosomes protein profiles, whereas the other related pathways activated were processes related to energy metabolism from glucose, amino acid metabolism, or RNA regulation. However, the role of autophagy in the entire life cycle of T. cruzi and the presence of processes such as meiosis and homologous recombination in MTs (where the expressions of SPO11 and Rad51 plays a role) are crucial. These findings represent an important step towards the full understanding of the molecular basis during the life cycle of T. cruzi.

]]>
<![CDATA[fRNAkenseq: a fully powered-by-CyVerse cloud integrated RNA-sequencing analysis tool]]> https://www.researchpad.co/article/elastic_article_8314 Decreasing costs make RNA sequencing technologies increasingly affordable for biologists. However, many researchers who can now afford sequencing lack access to resources necessary for downstream analysis. This means that even as algorithms to process RNA-Seq data improve, many biologists still struggle to manage the sheer volume of data produced by next generation sequencing (NGS) technologies. Scalable bioinformatics tools that exploit multiple platforms are needed to democratize bioinformatics resources in the sequencing era. This is essential for equipping many research groups in the life sciences with the tools to process the increasingly unwieldy datasets they produce.MethodsOne strategy to address this challenge is to develop a modern generation of sequence analysis tools capable of seamless data sharing and communication. Such tools will provide interoperability through offerings of interlinked resources. Systems of interlinked, scalable resources, which often incorporate cloud data storage, are broadly referred to as cyberinfrastructure. Cyberinfrastructure integrated tools will help researchers to robustly analyze large scale datasets by efficiently sharing data burdens across a distributed architecture. Additionally, interoperability will allow emerging tools to cross-adapt features of existing tools. It is important that these tools are designed to be easy to use for biologists.ResultsWe introduce fRNAkenseq, a powered-by-CyVerse RNA sequencing analysis tool that exhibits interoperability with other resources and meets the needs of biologists for comprehensive, easy to use RNA sequencing analysis. fRNAkenseq leverages a complex set of Application Programming Interfaces (APIs) associated with the NSF-funded cyberinfrastructure project, CyVerse, to execute FASTQ-to-differential expression RNA-Seq analyses. Integrating across bioinformatics platforms, fRNAkenseq also exploits cloud integration and cross-talk with another CyVerse associated tool, CoGe. fRNAkenseq offers novel features for the biologist such as more robust and comprehensive pipelines for enrichment than those currently available by default in a single tool, whether they are cloud-based or local installation. Importantly, cross-talk with CoGe allows fRNAkenseq users to execute RNA-Seq pipelines on an inventory of 47,000 archived genomes stored in CoGe or upload their own draft genome. ]]> <![CDATA[Comparative analysis of the complete chloroplast genomes from six Neotropical species of Myrteae (Myrtaceae)]]> https://www.researchpad.co/article/elastic_article_6282 Myrteae is the largest and most diverse tribe within Myrtaceae and represents the majority of its diversity in the Neotropics. Members of Myrteae hold ecological importance in tropical biomes for the provision of food sources for many animal species. Thus, due to its several roles, a growing interest has been addressed to this group. In this study, we report the sequencing and de novo assembly of the complete chloroplast (cp) genomes of six Myrteae species: Eugenia brasiliensis, E. pyriformis, E. nitida, Myrcianthes pungens, Plinia edulis and Psidium cattleianum. We characterized genome structure, gene content, and identified SSRs to detect variation within Neotropical Myrteae. The six newly sequenced plastomes exhibit a typical quadripartite structure, gene content and organization highly conserved among Myrtaceae species. Some differences in genome length, protein-coding genes and non-coding regions were found. Besides, IR boundaries present structural changes among species. Increased sequence diversity was observed in some intergenic regions, suggesting their suitability for investigating intraand interspecific genetic diversity in populational studies. These data also contribute to the improvement of taxa sampling in further phylogenetic investigations to understand Myrtaceae evolution.

]]>