ResearchPad - genotyping https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies]]> https://www.researchpad.co/article/elastic_article_14581 Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.

]]>
<![CDATA[SNP markers for low molecular glutenin subunits (LMW-GSs) at the <i>Glu-A3</i> and <i>Glu-B3</i> loci in bread wheat]]> https://www.researchpad.co/article/elastic_article_13817 The content and composition of seed storage proteins is largely responsible for wheat end-use quality. They mainly consist of polymeric glutenins and monomeric gliadins. According to their electrophoretic mobility, gliadins and glutenins are subdivided into several fractions. Glutenins are classified as high molecular weight or low molecular weight glutenin subunits (HMW-GSs and LMW-GSs, respectively). LMW-GSs are encoded by multigene families located at the orthologous Glu-3 loci. We designed a set of 16 single-nucleotide polymorphism (SNP) markers that are able to detect SDS-PAGE alleles at the Glu-A3 and Glu-B3 loci. The SNP markers captured the diversity of alleles in 88 international reference lines and 27 Mexican cultivars, when compared to SDS-PAGE and STS markers, however, showed a slightly larger percent of multiple alleles, mainly for Glu-B3. SNP markers were then used to determine the Glu-1 and Glu-3 allele composition in 54 CIMMYT historical lines and demonstrated to be useful tool for breeding programs to improve wheat end product properties.

]]>
<![CDATA[How “simple” methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish]]> https://www.researchpad.co/article/N3bb2bc39-24d6-4fe3-98ed-f97dea058c57

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.

]]>
<![CDATA[Swift Large-scale Examination of Directed Genome Editing]]> https://www.researchpad.co/article/5c8823fad5eed0c484639487

In the era of CRISPR gene editing and genetic screening, there is an increasing demand for quick and reliable nucleic acid extraction pipelines for rapid genotyping of large and diverse sample sets. Despite continuous improvements of current workflows, the handling-time and material costs per sample remain major limiting factors. Here we present a robust method for low-cost DIY-pipet tips addressing these needs; i.e. using a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kingdoms to samples ranging from cells to tissues i. e. plant seedlings, adult flies, mouse cell culture and tissue as well as adult fish fin-clips.

]]>
<![CDATA[Assessing the role of transmission chains in the spread of HIV-1 among men who have sex with men in Quebec, Canada]]> https://www.researchpad.co/article/5c89773dd5eed0c4847d27bf

Background

Phylogenetics has been used to investigate HIV transmission among men who have sex with men. This study compares several methodologies to elucidate the role of transmission chains in the dynamics of HIV spread in Quebec, Canada.

Methods

The Quebec Human Immunodeficiency Virus (HIV) genotyping program database now includes viral sequences from close to 4,000 HIV-positive individuals classified as Men who have Sex with Men (MSMs), collected between 1996 and early 2016. Assessment of chain expansion may depend on the partitioning scheme used, and so, we produce estimates from several methods: the conventional Bayesian and maximum likelihood-bootstrap methods, in combination with a variety of schemes for applying a maximum distance criterion, and two other algorithms, DM-PhyClus, a Bayesian algorithm that produces a measure of uncertainty for proposed partitions, and the Gap Procedure, a fast non-phylogenetic approach. Sequences obtained from individuals in the Primary HIV Infection (PHI) stage serve to identify incident cases. We focus on the period ranging from January 1st 2012 to February 1st 2016.

Results and conclusion

The analyses reveal considerable overlap between chain estimates obtained from conventional methods, thus leading to similar estimates of recent temporal expansion. The Gap Procedure and DM-PhyClus suggest however moderately different chains. Nevertheless, all estimates stress that longer older chains are responsible for a sizeable proportion of the sampled incident cases among MSMs. Curbing the HIV epidemic will require strategies aimed specifically at preventing such growth.

]]>
<![CDATA[How to integrate wet lab and bioinformatics procedures for wine DNA admixture analysis and compositional profiling: Case studies and perspectives]]> https://www.researchpad.co/article/5c6c759cd5eed0c4843cff14

The varietal authentication of wines is fundamental for assessing wine quality, and it is part of its compositional profiling. The availability of historical, cultural and chemical composition information is extremely important for quality evaluation. DNA-based techniques are a powerful tool for proving the varietal composition of a wine. SSR-amplification of genomic residual Vitis vinifera DNA, namely Wine DNA Fingerprinting (WDF) is able to produce strong, analytical evidence concerning the monovarietal nature of a wine, and for blended wines by generating the probability of the presence/absence of a certain variety, all in association with a dedicated bioinformatics elaboration of genotypes associated with possible varietal candidates. Together with WDF we could exploit Bioinformatics techniques, due to the number of grape genomes grown. In this paper, the use of WDF and the development of a bioinformatics tool for allelic data validation, retrieved from the amplification of 7 to 10 SSRs markers in the Vitis vinifera genome, are reported. The wines were chosen based on increasing complexity; from monovarietal, experimental ones, to commercial monovarietals, to blended commercial wines. The results demonstrate that WDF, after calculation of different distance matrices and Neighbor-Joining input data, followed by Principal Component Analysis (PCA) can effectively describe the varietal nature of wines. In the unknown blended wines the WDF profiles were compared to possible varietal candidates (Merlot, Pinot Noir, Cabernet Sauvignon and Zinfandel), and the output graphs show the most probable varieties used in the blend as closeness to the tested wine. This pioneering work should be meant as to favor in perspective the multidisciplinary building-up of on-line databanks and bioinformatics toolkits on wine. The paper concludes with a discussion on an integrated decision support system based on bioinformatics, chemistry and cultural data to assess wine quality.

]]>
<![CDATA[A novel point-of-care oral anti-HCV assay: Is it reliable for screening hepatitis C virus infection in the era of direct-acting antivirals?]]> https://www.researchpad.co/article/5c6c75cfd5eed0c4843d01fd

Recent advance in the direct-acting antivirals (DAAs) offers the potentials to eradicate hepatitis C virus (HCV) worldwide and makes universal screening more urgent. A point-of-care (POC) oral anti-HCV assay, the Fortune assay, was developed and its performance was evaluated. Individuals with or without HCV infection were recruited in three Centers. Paired oral and serum samples were tested using the Fortune and InTec anti-HCV assays. The Kehua serum anti-HCV assay served as a supplemental test to verify the discordant results. Some oral samples were also tested using the OraQuick anti-HCV assay. Furthermore, the Fortune assay results were compared with the documented RNA results. Sensitivity, specificity, and accuracy of the Fortune assay was 93.11%, 98.48%, and 96.58%, respectively (n = 1,022). Consistency between the Fortune and OraQuick assays was 96.35% (264/274); the Fortune assay detected additional 8 positive oral samples missed by the OraQuick assay. The Fortune assay demonstrated a 97.46% (115/118) positivity among the viremic patients. Furthermore, its sensitivity was HCV genotype independent. In conclusion, the Fortune assay was highly specific and accurate. It had comparable sensitivity as the serum assays for the diagnosis of active HCV infection. It provides a completely non-invasive and reliable tool for HCV screening in the DAA era.

]]>
<![CDATA[Improving cost-efficiency of faecal genotyping: New tools for elephant species]]> https://www.researchpad.co/article/5c5b527bd5eed0c4842bc95f

Despite the critical need for non-invasive tools to improve monitoring of wildlife populations, especially for endangered and elusive species, faecal genetic sampling has not been adopted as regular practice, largely because of the associated technical challenges and cost. Substantial work needs to be undertaken to refine sample collection and preparation methods in order to improve sample set quality and provide cost-efficient tools that can effectively support wildlife management. In this study, we collected an extensive set of forest elephant (Loxodonta cyclotis) faecal samples throughout Gabon, Central Africa, and prepared them for genotyping using 107 single-nucleotide polymorphism assays. We developed a new quantitative polymerase chain reaction (PCR) assay targeting a 130-bp nuclear DNA fragment and demonstrated its suitability for degraded samples in all three elephant species. Using this assay to compare the efficacy of two sampling methods for faecal DNA recovery, we found that sampling the whole surface of a dung pile with a swab stored in a small tube of lysis buffer was a convenient method producing high extraction success and DNA yield. We modelled the influence of faecal quality and storage time on DNA concentration in order to provide recommendations for optimized collection and storage. The maximum storage time to ensure 75% success was two months for samples collected within 24 hours after defecation and extended to four months for samples collected within one hour. Lastly, the real-time quantitative PCR assay allowed us to predict genotyping success and pre-screen DNA samples, thus further increasing the cost-efficiency of our approach. We recommend combining the validation of an efficient sampling method, the build of in-country DNA extraction capacity for reduced storage time and the development of species-specific quantitative PCR assays in order to increase the cost-efficiency of routine non-invasive DNA analyses and expand the use of next-generation markers to non-invasive samples.

]]>
<![CDATA[The ezh2(sa1199) mutant zebrafish display no distinct phenotype]]> https://www.researchpad.co/article/5c536c14d5eed0c484a498f7

Polycomb group (PcG) proteins are essential regulators of epigenetic gene silencing and development. The PcG protein enhancer of zeste homolog 2 (Ezh2) is a key component of the Polycomb Repressive Complex 2 and is responsible for placing the histone H3 lysine 27 trimethylation (H3K27me3) repressive mark on the genome through its methyltransferase domain. Ezh2 is highly conserved in vertebrates. We studied the role of ezh2 during development of zebrafish with the use of a mutant allele (ezh2(sa1199), R18STOP), which has a stop mutation in the second exon of the ezh2 gene. Two versions of the same line were used during this study. The first and original version of zygotic ezh2(sa1199) mutants unexpectedly retained ezh2 expression in brain, gut, branchial arches, and eyes at 3 days post-fertilization (dpf), as revealed by in-situ hybridization. Moreover, the expression pattern in homozygous mutants was identical to that of wild types, indicating that mutant ezh2 mRNA is not subject to nonsense mediated decay (NMD) as predicted. Both wild type and ezh2 mutant embryos presented edemas at 2 and 3 dpf. The line was renewed by selective breeding to counter select the non-specific phenotypes and survival was assessed. In contrast to earlier studies on ezh2 mutant zebrafish, ezh2(sa1199) mutants survived until adulthood. Interestingly, the ezh2 mRNA and Ezh2 protein were present during adulthood (70 dpf) in both wild type and ezh2(sa1199) mutant zebrafish. We conclude that the ezh2(sa1199) allele does not exhibit an ezh2 loss-of-function phenotype.

]]>
<![CDATA[Clinical performance of Anyplex II HPV28 by human papillomavirus type and viral load in a referral population]]> https://www.researchpad.co/article/5c5217cad5eed0c4847945b2

Anyplex II HPV28 (`Anyplex`) is a semi-quantitative DNA PCR assay divided into set A, comprising 14 high risk (hr)HPV types; and set B, comprising 5 possibly hrHPV types and 9 low risk (lr)HPV types. We compared the ability of Anyplex to that of Hybrid Capture 2 (HC2) and PreTect HPV-Proofer (`Proofer`) to detect cervical intraepithelial neoplasia grade two or worse (CIN2+) by HPV types and viral load. This cross-sectional study included 296 women referred to colposcopy with abnormal cervical cytology and/or persistent HPV infection. CIN2+ was identified in 175/296 women. Liquid based cytology samples were used to perform HPV testing. The sensitivity of Anyplex to detect CIN2+ was 98.9% (95% CI 95.9–99.9) and specificity 43.0% (95% CI 34.0–52.3). Restricting to medium and high viral loads in Anyplex set A, sensitivity and specificity were 97.1% (95% CI 93.5–99.1) and 59.5% (95% CI 50.2–68.3) with positive (PPV) and negative predictive value (NPV) 77.6% and 93.5%, respectively, comparable to HC2. Restricting Anyplex to the hrHPV types in Proofer, HPV16, 18, 31, 33 and 45, sensitivity and specificity for CIN2+ were 85.1% (95% CI 79.0–90.1) and 71.1% (95% CI 62.1–79.0), comparable to Proofer`s. When adding HPV52 and 58, the sensitivity for CIN2+ was 92.6% (95% CI 87.6–96.0) and CIN3+ 96.5% (95% CI 92.0–98.8). No value of Anyplex set B was found in detecting CIN2+. In conclusion, the clinical performance of medium and high viral loads in Anyplex set A was comparable to HC2. Restricting the test to the 7 hrHPV types included in the 9-valent HPV-vaccine, HPV16, 18, 31, 33, 45, 52 and 58, satisfies the international criteria for cervical cancer screening with relative sensitivity compared to HC2 for CIN2+ and CIN3+ of 0.98 and 1.01, respectively. Detecting all 28 Anyplex HPV types adds no benefit in a referral population.

]]>
<![CDATA[Shedding and genetic diversity of Coxiella burnetii in Polish dairy cattle]]> https://www.researchpad.co/article/5c40f7d5d5eed0c484386a74

Q fever is a worldwide zoonotic disease reported in humans and many animal species including cattle. The aims of this study were to evaluate the prevalence of Coxiella (C.) burnetii shedding in Polish dairy cattle herds and to identify the pathogen’s genotypes and sequence types (STs) using multiple-locus variable number tandem repeat analysis (MLVA) and multispacer sequence typing (MST) methods. The presence of C. burnetii DNA was detected using a commercial real-time PCR kit, targeting the IS1111 element. Overall, 1,439 samples from 279 herds were tested including: 897 individual milk specimens, 101 bulk tank milk samples, 409 genital tract swabs and 32 placentas. Furthermore, 30 consumer milk samples, including 10 from vending machines and 77 dairy products were also analyzed. C. burnetii shedding was confirmed in 31.54% of tested cattle herds as well as in 69.16% of consumer milk and dairy products. Among real-time PCR–positive samples, 49 specimens obtained from 49 cattle herds and 8 samples of purchased dairy products were selected for genotyping. Overall, five previously known MLVA genotypes (I, J, BG, BE, and NM) and three new ones (proposed as PL1, PL2, and PL3) were identified. Two MST sequence types were recorded: ST16 and a novel sequence (ST61). The new genotypes and sequence types need further research particularly into their pathogenicity to humans.

]]>
<![CDATA[Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection]]> https://www.researchpad.co/article/5c478c38d5eed0c484bd0df6

Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the “quality” of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population. There are very few studies that examine the reliability of these markers in other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve the MAS process, this work proposes five core metrics that fully describe the reliability of a marker. These metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm as QTL[+]/[–], particularly against a background of high allelic diversity. Markers that score well on these metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on circumstances under which a marker may not be reliable. The metrics are applicable across different marker types and platforms, allowing an objective comparison of the performance of different markers irrespective of the platform. Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-perform markers designed for other purposes. These metrics also provide a superb set of criteria for designing superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to design.

]]>
<![CDATA[Adhesion molecule gene variants and plasma protein levels in patients with suspected obstructive sleep apnea]]> https://www.researchpad.co/article/5c605a1dd5eed0c4847cc9bd

Study objectives

Untreated obstructive sleep apnea (OSA) patients have an increased risk of cardiovascular disease (CVD). Adhesion molecules, including soluble E-selectin (sE-selectin), intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1), are associated with incident CVD. We hypothesized that specific genetic variants will be associated with plasma levels of adhesion molecules in suspected OSA patients. We also hypothesized that there may be an interaction between these variants and OSA.

Methods

We measured levels of sE-selectin, sICAM-1 and sVCAM-1 in 491 patients with suspected OSA and genotyped them for 20 polymorphisms.

Results

The most significant association was between the ABO rs579459 polymorphism and sE-selectin levels (P = 7×10−21), with the major allele T associated with higher levels. The direction of effect and proportion of the variance in sE-selectin levels accounted for by rs579459 (16%) was consistent with estimates from non-OSA cohorts. In a multivariate regression analysis, addition of rs579459 improved the model performance in predicting sE-selectin levels. Three polymorphisms were nominally associated with sICAM-1 levels but none with sVCAM-1 levels. The combination of severe OSA and two rs579459 T alleles identified a group of patients with high sE-selectin levels; however, the increase in sE-selectin levels associated with severe OSA was greater in patients without two T alleles (P = 0.05 test for interaction).

Conclusions

These genetic polymorphisms may help to identify patients at greatest risk of incident CVD and may help in developing a more precision-based approach to OSA care.

]]>
<![CDATA[Role of genomic DNA methylation in detection of cytologic and histologic abnormalities in high risk HPV-infected women]]> https://www.researchpad.co/article/5c390b8ed5eed0c48491d389

Cervical cancer is the fourth most common malignancy affecting women worldwide. The development of disease is related to high-risk human papillomavirus (hrHPV) infection. Cytology has been the most recommended triage for primary cervical (pre)cancer screening despite relatively low sensitivity. Recently, genomic DNA methylation has been proposed as an additional marker to increase sensitivity for detecting cervical precancerous lesion. This study aimed to evaluate the performance of methylation status of three tumor suppressor genes (CADM1, FAM19A4, and MAL) and HPV genotyping in detection of cytologic and histologic abnormalities in cervical cancer screening. Two hundred and sixty samples with available frozen cell pellets including 70 randomly selected cases of negative for intraepithelial lesion or malignancy (NILM)&HPV-negative, 70 randomly selected cases of NILM&HPV-positive, and 120 cytologic abnormalities & HPV-positive from a population-based cervical cancer screening program (n = 7,604) were investigated for the DNA methylation pattern of CADM1, FAM19A4, and MAL. Of 120 cytologic abnormalities & HPV-positive cases, there were 115 available histologic results. HPV52 and HPV58 were most commonly found in histologic HSIL+. The methylation levels of CADM1, FAM19A4, and MAL were elevated with the severity of cytologic abnormality which significantly increased by 3.37, 6.65 and 2 folds, respectively, in cytologic HSIL comparing with NILM. A significant increase in methylation levels of these three genes was also observed in histologic HSIL+ compared with negative histology but only CADM1 showed a significant higher methylation level than histologic LSIL. Using the ROC curve analysis, DNA methylation levels of FAM19A4 performed best in differentiating high-grade cytology (ASC-H+ from NILM/ASC-US/LSIL), followed by CADM1 and MAL. Whilst the CADM1 methylation performed best in distinguishing histologic HSIL+ from negative/LSIL with an area under the ROC curve of 0.684, followed by MAL (0.663) and FAM19A4 (0.642). Interestingly, after combining high DNA methylation levels to HPV16/18 genotypes, rates of histologic HSIL+ detection were substantially increased from 25% to 79.55% for CADM1, 77.27% for FAM19A4, and 72.73% for MAL, respectively. The rate further increased up to 95.45% when at least one of three genes had a high methylation level. This suggests a possible role of genomic DNA methylation, especially CADM1, in detecting histologic HSIL+ lesions in combination with hrHPV testing.

]]>
<![CDATA[Distribution of HCV genotypes in Belgium from 2008 to 2015]]> https://www.researchpad.co/article/5c117b69d5eed0c484699195

Background

The knowledge of circulating HCV genotypes and subtypes in a country is crucial to guide antiviral therapy and to understand local epidemiology. Studies investigating circulating HCV genotypes and their trends have been conducted in Belgium. However they are outdated, lack nationwide representativeness or were not conducted in the general population.

Methods

In order to determine the distribution of different circulating HCV genotypes in Belgium, we conducted a multicentre study with all the 19 Belgian laboratories performing reimbursed HCV genotyping assays. Available genotype and subtype data were collected for the period from 2008 till 2015. Furthermore, a limited number of other variables were collected: some demographic characteristics from the patients and the laboratory technique used for the determination of the HCV genotype.

Results

For the study period, 11,033 unique records collected by the participating laboratories were used for further investigation.

HCV genotype 1 was the most prevalent (53.6%) genotype in Belgium, with G1a and G1b representing 19.7% and 31.6%, respectively. Genotype 3 was the next most prevalent (22.0%). Further, genotype 4, 2, and 5 were responsible for respectively 16.1%, 6.2%, and 1.9% of HCV infections. Genotype 6 and 7 comprise the remaining <1%. Throughout the years, a stable distribution was observed for most genotypes. Only for genotype 5, a decrease as a function of the year of analysis was observed, with respectively 3.6% for 2008, 2.3% for 2009 and 1.6% for the remaining years.

The overall M:F ratio was 1.59 and was mainly driven by the high M:F ratio of 3.03 for patients infected with genotype 3. Patients infected with genotype 3 are also younger (mean age 41.7 years) than patients infected with other genotypes (mean age above 50 years for all genotypes). The patients for whom a genotyping assay was performed in 2008 were younger than those from 2015.

Geographical distribution demonstrates that an important number of genotyped HCV patients live outside the Belgian metropolitan cities.

Conclusion

This national monitoring study allowed a clear and objective view of the circulating HCV genotypes in Belgium and will help health authorities in the establishment of cost effectiveness determinations before implementation of new treatment strategies.

This baseline characterization of the circulating genotypes is indispensable for a continuous surveillance, especially for the investigation of the possible impact of migration from endemic regions and prior to the increasing use of highly potent direct-acting antiviral (DAA) agents.

]]>
<![CDATA[Leucine rich repeat kinase 2 (LRRK2) GLY2019SER mutation is absent in a second cohort of Nigerian Africans with Parkinson disease]]> https://www.researchpad.co/article/5c0ed789d5eed0c484f14346

To date the LRRK2 p.G2019S mutation remains the most common genetic cause of Parkinson disease (PD) worldwide. It accounts for up to 6% of familial and approximately 1.5% of sporadic cases. LRRK2 has a kinase enzymatic domain which provides an attractive potential target for drug therapies and LRRK2 kinase inhibitors are in development. Prevalence of the p.G2019S has a variable ethnic and geographic distribution, the highest reported among Ashkenazi Jews (30% in patients with familial PD, 14% in sporadic PD, 2.0% in controls) and North African Berbers (37% in patients with familial PD, 41% in sporadic PD, and 1% in controls). Little is known about the frequency of the LRRK2 p.G2019S among populations in sub-Saharan Africa. Our group and others previously reported that the p.G2019S is absent in a small cohort of Nigerian PD patients and controls. Here we used Kompetitive Allele Specific PCR (KASP) assay to screen for the p.G2019S in a larger cohort of Black African PD patients (n = 126) and healthy controls (n = 54) from Nigeria. Our analysis confirmed that all patients and controls are negative for the p.G2019S mutation. This report provides further evidence that the LRRK2 p.G2019S is not implicated in PD in black populations from Nigeria and support the notion that p.G2019S mutation originated after the early human dispersal from sub-Saharan Africa. Further studies using larger cohorts and advance sequencing technology are required to underpin the genetic causes of PD in this region.

]]>
<![CDATA[Development and validation of a method for human papillomavirus genotyping based on molecular beacon probes]]> https://www.researchpad.co/article/5c0993d0d5eed0c4842ad9d7

We describe a new assaying system for the detection and genotyping of human papillomavirus (HPV) based on linear-after-the-exponential-PCR(LATE-PCR) and melting curve analysis. The 23 most prevalent HPV strains (types 6, 11, 16, 18, 31, 33, 35, 39, 42, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, 81, 82, and 83) are assayed in two sealed reaction tubes within 2 h. Good sensitivity and specificity was evaluated by testing cloned HPV DNA and clinical samples. The detection limit was 5–500 copies/reaction depending on the genotype. No cross-reactivity was observed with the other HPV types that are not covered by our method or pathogens tested which were commonly found in female genital tract. When compared with the HPV GenoArray Diagnostic kit, the results from 1104 clinical samples suggest good overall agreement between the two methods,(98.37%, 95% CI: 97.44%–98.97%) and the kappa value was 0.954. Overall, this new HPV genotyping assay system presents a simple, rapid, universally applicable, sensitive, and highly specific detection methodology that should be useful for HPV detection and genotyping, therefore, is potentially of great value in clinical application.

]]>
<![CDATA[SNPSelect: A scalable and flexible targeted sequence-based genotyping solution]]> https://www.researchpad.co/article/5bca48fb40307c051665641c

In plant breeding the use of molecular markers has resulted in tremendous improvement of the speed with which new crop varieties are introduced into the market. Single Nucleotide Polymorphism (SNP) genotyping is routinely used for association studies, Linkage Disequilibrium (LD) and Quantitative Trait Locus (QTL) mapping studies, marker-assisted backcrosses and validation of large numbers of novel SNPs. Here we present the KeyGene SNPSelect technology, a scalable and flexible multiplexed, targeted sequence-based, genotyping solution. The multiplex composition of SNPSelect assays can be easily changed between experiments by adding or removing loci, demonstrating their content flexibility. To demonstrate this versatility, we first designed a 1,056-plex maize assay and genotyped a total of 374 samples originating from an F2 and a Recombinant Inbred Line (RIL) population and a maize germplasm collection. Next, subsets of the most informative SNP loci were assembled in 384-plex and 768-plex assays for further genotyping. Indeed, selection of the most informative SNPs allows cost-efficient yet highly informative genotyping in a custom-made fashion, with average call rates between 88.1% (1,056-plex assay) and 99.4% (384-plex assay), and average reproducibility rates between duplicate samples ranging from 98.2% (1056-plex assay) to 99.9% (384-plex assay). The SNPSelect workflow can be completed from a DNA sample to a genotype dataset in less than three days. We propose SNPSelect as an attractive and competitive genotyping solution to meet the targeted genotyping needs in fields such as plant breeding.

]]>
<![CDATA[Direct, indirect and total effectiveness of bivalent HPV vaccine in women in Galicia, Spain]]> https://www.researchpad.co/article/5b6dda03463d7e7491b405df

Bivalent human papillomavirus (HPV) vaccine was incorporated into the childhood vaccination calendar in Galicia, Spain in 2008. The objectives of this study were to estimate direct, indirect and total effectiveness of HPV vaccine and to identify sexual habits changes in the post-vaccination period in Galicia, Spain.Endocervical scrapings of 745 women attending 7 Health Areas of the Galician Public Health Service were collected in the post-vaccination period, from 2014–2017. Two groups were studied: women born between 1989 and 1993 (n = 397) and women born in 1994 or later (n = 348). Twelve high-risk human papillomavirus (HR-HPV) genotypes were detected by Cobas® 4800 HPV test (Roche Diagnostics, Mannheim, Germany). The Linear Array® HPV Genotyping Test (Roche Diagnostics) was used for HR-HPV genotype detection other than HPV 16/18. Information about sexual habits was collected by a self-filled questionnaire. Post-vaccination data were compared to previously published pre-vaccination data obtained between 2008 and 2010 in Galicia from women of the same age (18–26 years old, n = 523). The Stata 14.2 software was employed for statistical analyses.Data from 392 unvaccinated and 353 vaccinated women were compared. For unvaccinated and vaccinated women, HPV 16/18 prevalence was 9.2% and 0.8%, respectively, and HPV 31/33/45 prevalence was 8.4% and 1.1%, respectively. Direct, indirect and total effectiveness of the HPV vaccine were (%, 95% CI): 94 (72−99), 30 (-11−56) and 95 (79−99), respectively, for HPV 16/18 and 83 (46−94), -10 (-88−33) and 84 (54−94), respectively, for HPV 31/33/45. The number of women with first intercourse before 17 years old and 3 or more sexual partners along life was higher in the post-vaccination period (p < 0.05). A positive impact of bivalent HPV vaccine was observed, both on direct and cross protection. Sexual habits could have changed in the post-vaccination period.

]]>
<![CDATA[Recurrence of tuberculosis among newly diagnosed sputum positive pulmonary tuberculosis patients treated under the Revised National Tuberculosis Control Programme, India: A multi-centric prospective study]]> https://www.researchpad.co/article/5b4a2880463d7e4513b897f9

Introduction

There is lack of information on the proportion of new smear—positive pulmonary tuberculosis (PTB) patients treated with a 6-month thrice-weekly regimen under Revised National Tuberculosis Control Programme (RNTCP) who develop recurrent TB after successful treatment outcome.

Objective

To estimate TB recurrence among newly diagnosed PTB patients who have successfully completed treatment and to document endogenous reactivation or re-infection. Risk factors for unfavourable outcomes to treatment and TB recurrence were determined.

Methodology

Adult (aged ≥ 18 yrs) new smear positive PTB patients initiated on treatment under RNTCP were enrolled from sites in Tamil Nadu, Karnataka, Delhi, Maharashtra, Madhya Pradesh and Kerala. Those declared “treatment success” at the end of treatment were followed up with 2 sputum examinations each at 3, 6 and 12 months after treatment completion. MIRU-VNTR genotyping was done to identify endogenous re-activation or exogenous re-infection at TB recurrence. TB recurrence was expressed as rate per 100 person-years (with 95% confidence interval [95%CI]). Regression models were used to identify the risk factors for unfavourable response to treatment and TB recurrence.

Results

Of the1577 new smear positive PTB patients enrolled, 1565 were analysed. The overall cure rate was 77% (1207/1565) and treatment success was 77% (1210 /1565). The cure rate varied from 65% to 86%. There were 158 of 1210 patients who had TB recurrence after treatment success. The pooled TB recurrence estimate was 10.9% [95%CI: 0.2–21.6] and TB recurrence rate per 100 person–years was 12.7 [95% CI: 0.4–25]. TB recurrence per 100 person–years varied from 5.4 to 30.5. Endogenous reactivation was observed in 56 (93%) of 60 patients for whom genotyping was done. Male gender was associated with TB recurrence.

Conclusion

A substantial proportion of new smear positive PTB patients successfully treated with 6 –month thrice-weekly regimen have TB recurrence under program settings.

]]>