ResearchPad - global-warming https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Temperature and preeclampsia: Epidemiological evidence that perturbation in maternal heat homeostasis affects pregnancy outcome]]> https://www.researchpad.co/article/elastic_article_15767 This study aims to determine the association between temperature and preeclampsia and whether it is affected by seasonality and rural/urban lifestyle.MethodsThis cohort study included women who delivered at our medical center from 2004 to 2013 (31,101 women, 64,566 deliveries). Temperature values were obtained from a spatiotemporally resolved estimation model performing predictions at a 1×1km spatial resolution. In “Warm” pregnancies >50% of gestation occurred during the spring-summer period. In cold pregnancies >50% of gestation occurred during the fall and winter. Generalized estimating equation multivariable models were used to estimate the association between temperature and incidence of preeclampsia.Results1) The incidence of preeclampsia in at least one pregnancy was 7% (2173/64,566); 2) during “warm” pregnancies, an elevation of one IQR of the average temperature in the 1st or the 3rd trimesters was associated with an increased risk to develop preeclampsia [patients with Jewish ethnicity: 1st trimester: relative risk (RR) of 2.38(95%CI 1.50; 3.80), 3rd trimester 1.94(95%CI 1.34;2.81); Bedouins: 1st trimester: RR = 2.91(95%CI 1.98;4.28), 3rd trimester: RR = 2.37(95%CI 1.75;3.20)]; 3) In “cold” pregnancies, an elevation of one IQR of average temperature was associated with a lower risk to develop preeclampsia among patients with Bedouin-Arab ethnicity RR = 0.68 (95% CI 0.49–0.94) for 1st trimester and RR = 0.62 (95% CI 0.44–0.87) for 3rd trimester.Conclusions1) Elevated averaged temperature during the 1st or 3rd trimesters in “warm” pregnancies confer an increased risk for the development of preeclampsia, especially in nomadic patients; 2) Of interest, during cold pregnancies, elevated averaged temperature was associated with a lower risk to develop preeclampsia for nomadic patients. 3) These findings suggest temperature might be associated with perturbations in maternal heat homeostasis resulting in reallocation of energy resources and their availability to the fetus that may increase the risk for preeclampsia. This observation is especially relevant in the context of global warming and its effects on maternal/fetal reproductive health. ]]> <![CDATA[Hydropower's Biogenic Carbon Footprint]]> https://www.researchpad.co/article/5989da2bab0ee8fa60b82860

Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations.

]]>
<![CDATA[Predicting the Potential Distribution of Polygala tenuifolia Willd. under Climate Change in China]]> https://www.researchpad.co/article/5989db42ab0ee8fa60bd708e

Global warming has created opportunities and challenges for the survival and development of species. Determining how climate change may impact multiple ecosystem levels and lead to various species adaptations is necessary for both biodiversity conservation and sustainable biological resource utilization. In this study, we employed Maxent to predict changes in the habitat range and altitude of Polygala tenuifolia Willd. under current and future climate scenarios in China. Four representative concentration pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) were modeled for two time periods (2050 and 2070). The model inputs included 732 presence points and nine sets of environmental variables under the current conditions and the four RCPs in 2050 and 2070. The area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate model performance. All of the AUCs were greater than 0.80, thereby placing these models in the “very good” category. Using a jackknife analysis, the precipitation in the warmest quarter, annual mean temperature, and altitude were found to be the top three variables that affect the range of P. tenuifolia. Additionally, we found that the predicted highly suitable habitat was in reasonable agreement with its actual distribution. Furthermore, the highly suitable habitat area was slowly reduced over time.

]]>
<![CDATA[Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf524

Misinformation can undermine a well-functioning democracy. For example, public misconceptions about climate change can lead to lowered acceptance of the reality of climate change and lowered support for mitigation policies. This study experimentally explored the impact of misinformation about climate change and tested several pre-emptive interventions designed to reduce the influence of misinformation. We found that false-balance media coverage (giving contrarian views equal voice with climate scientists) lowered perceived consensus overall, although the effect was greater among free-market supporters. Likewise, misinformation that confuses people about the level of scientific agreement regarding anthropogenic global warming (AGW) had a polarizing effect, with free-market supporters reducing their acceptance of AGW and those with low free-market support increasing their acceptance of AGW. However, we found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were effective in neutralizing those adverse effects of misinformation. We recommend that climate communication messages should take into account ways in which scientific content can be distorted, and include pre-emptive inoculation messages.

]]>
<![CDATA[Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change]]> https://www.researchpad.co/article/5989da17ab0ee8fa60b7b7fa

Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.

]]>
<![CDATA[A human-scale perspective on global warming: Zero emission year and personal quotas]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be1145

This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the “well below 2°C” warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work’s primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2.

]]>
<![CDATA[An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc04d

The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

]]>
<![CDATA[Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests]]> https://www.researchpad.co/article/5989dac1ab0ee8fa60bb0bf3

Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

]]>
<![CDATA[The Effect of Information Provision on Public Consensus about Climate Change]]> https://www.researchpad.co/article/5989da81ab0ee8fa60b9ad58

Despite over 20 years of research and scientific consensus on the topic, climate change continues to be a politically polarizing issue. We conducted a survey experiment to test whether providing the public with information on the exact extent of scientific agreement about the occurrence and causes of climate change affects respondents’ own beliefs and bridges the divide between conservatives and liberals. First, we show that the public significantly underestimated the extent of the scientific consensus. We then find that those given concrete information about scientists’ views were more likely to report believing that climate change was already underway and that it was caused by humans. However, their beliefs about the necessity of making policy decisions and their willingness to donate money to combat climate change were not affected. Information provision affected liberals, moderates, and conservatives similarly, implying that the gap in beliefs between liberals and conservatives is not likely to be bridged by information treatments similar to the one we study. Finally, we conducted a 6-month follow-up with respondents to see if the treatment effect persisted; the results were statistically inconclusive.

]]>
<![CDATA[How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students]]> https://www.researchpad.co/article/5989dad1ab0ee8fa60bb6432

Research suggests climate change beliefs among science teachers mirror those of the general public, raising questions of whether teachers may be perpetuating polarization of public opinion through their classrooms. We began answering these questions with a survey of middle school science teachers (n = 24) and their students (n = 369) in North Carolina, USA. Similar to previous studies, we found that though nearly all (92.1%) of students had teachers who believe that global warming is happening, few (12%) are in classrooms with teachers who recognize that global warming is anthropogenic. We found that teacher beliefs that global warming is happening and student climate change knowledge were the strongest predictors of student belief that global warming is happening and human caused. Conversely, teacher beliefs about human causes of global warming had no relationship with student beliefs, suggesting that science teachers’ low recognition of the causes of global warming is not necessarily problematic in terms of student outcomes. These findings may be explained by previous research suggesting adolescents interpret scientific information relatively independently of ideological constraints. Though teacher polarization may be problematic in its own right, it appears that as long as climate change information is presented in classrooms, students deduce anthropogenic causes.

]]>
<![CDATA[Examining the Gap between Science and Public Opinion about Genetically Modified Food and Global Warming]]> https://www.researchpad.co/article/5989da64ab0ee8fa60b918d9

There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community.

]]>
<![CDATA[Eight habitats, 38 threats and 55 experts: Assessing ecological risk in a multi-use marine region]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf6c2

Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.

]]>
<![CDATA[Decomposition of recalcitrant carbon under experimental warming in boreal forest]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be110d

Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition.

]]>
<![CDATA[Attitudes to in vitro meat: A survey of potential consumers in the United States]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc4a2

Positivity towards meat consumption remains strong, despite evidence of negative environmental and ethical outcomes. Although awareness of these repercussions is rising, there is still public resistance to removing meat from our diets. One potential method to alleviate these effects is to produce in vitro meat: meat grown in a laboratory that does not carry the same environmental or ethical concerns. However, there is limited research examining public attitudes towards in vitro meat, thus we know little about the capacity for it be accepted by consumers. This study aimed to examine perceptions of in vitro meat and identify potential barriers that might prevent engagement. Through conducting an online survey with US participants, we identified that although most respondents were willing to try in vitro meat, only one third were definitely or probably willing to eat in vitro meat regularly or as a replacement for farmed meat. Men were more receptive to it than women, as were politically liberal respondents compared with conservative ones. Vegetarians and vegans were more likely to perceive benefits compared to farmed meat, but they were less likely to want to try it than meat eaters. The main concerns were an anticipated high price, limited taste and appeal and a concern that the product was unnatural. It is concluded that people in the USA are likely to try in vitro meat, but few believed that it would replace farmed meat in their diet.

]]>
<![CDATA[Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States]]> https://www.researchpad.co/article/5989dadbab0ee8fa60bb9cd3

The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity.

]]>
<![CDATA[Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b655c3

Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.

]]>
<![CDATA[Signal of Acceleration and Physical Mechanism of Water Cycle in Xinjiang, China]]> https://www.researchpad.co/article/5989da92ab0ee8fa60ba08bc

Global warming accelerates water cycle with features of regional difference. However, little is known about the physical mechanism behind the phenomenon. To reveal the links between water cycle and climatic environment, we analyzed the changes of water cycle elements and their relationships with climatic and environmental factors. We found that when global warming was significant during the period of 1986-2003, the precipitation in Tarim mountains as well as Xinjiang increased rapidly except for Tarim plains, which indicated that there existed a signal of acceleration for water cycle in Xinjiang. The speed of water cycle is mainly affected by altitude, latitude, longitude, slope direction, and the most fundamental element is temperature. Moreover, according to Clausius-Kela Bai Lung relation, we found that the climate change induced the increase of temperature and accelerated the local water cycle only for the wet places. Our results provide a possible physical mechanisms of water cycle and thus well link the climate change to water circulation.

]]>
<![CDATA[Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment]]> https://www.researchpad.co/article/5989dabbab0ee8fa60baecc5

We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

]]>
<![CDATA[Can Novel Management Practice Improve Soil and Environmental Quality and Sustain Crop Yield Simultaneously?]]> https://www.researchpad.co/article/5989da98ab0ee8fa60ba290b

Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effects of novel and traditional management practices that included a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt barley (Hordeum vulgarie L.) yield and quality were examined under non-irrigated and irrigated cropping systems from 2008 to 2011 in eastern Montana and western North Dakota, USA. In loamy soil under non-irrigated condition in eastern Montana, novel and traditional management practices were no-till malt barley-pea (Pisum sativum L.) with 80 kg N ha-1 and conventional till malt barley-fallow with 80 kg N ha-1, respectively. In sandy loam soil under irrigated and non-irrigated conditions in western North Dakota, novel and traditional management practices included no-till malt barley-pea with 67 (non-irrigated) to 134 kg N ha-1 (irrigated) and conventional till malt barley with 67 (non-irrigated) to 134 kg N ha-1 (irrigated), respectively. Compared with the traditional management practice, soil organic C (SOC) and total N (STN) at 0–120 cm were 5% greater with the novel management practice under non-irrigated condition in eastern Montana and under irrigated condition in western North Dakota, but were not different under non-irrigated condition in western North Dakota. In both places under irrigated and non-irrigated conditions, total applied N rate, residual soil NO3-N content at 0–120 cm, global warming potential (GWP), and greenhouse gas intensity (GHGI) were 15 to 70% lower with the novel than the traditional management practice. Malt barley yield and quality were not different between the two practices in both places. Novel management practices, such as no-till malt barley-pea with reduced N rate, can simultaneously enhance soil and environmental quality, reduce N input, and sustain crop yield compared with traditional practices in the northern Great Plains, USA.

]]>