ResearchPad - glycogens https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Ontogenetic changes in energetic reserves, digestive enzymes, amino acid and energy content of <i>Lithodes santolla</i> (Anomura: Lithodidae): Baseline for culture]]> https://www.researchpad.co/article/elastic_article_14500 The southern king crab (SKC) Lithodes santolla is an important commercial species in southern South America. Fishing pressure has caused the deterioration of its stocks. Currently, culture techniques are being developed for producing SKC juveniles to enhance the natural population and to recover the fishing stock. Therefore, it is necessary to know about physiology, energetic and nutritional requirements for SKC maintenance in hatchery. Thus, this study aims to evaluate the biochemical and physiological changes in the midgut gland, muscle and hemolymph of juveniles, pre-adults and adults of wild SKC. The energetic reserves, digestive enzymes activity, amino acid profile and energy were quantified in twelve juveniles, ten pre-adult, and ten adult crabs. Juveniles showed high glycogen and low lipids in the midgut gland, and low proteins and low lactate in muscle. In the hemolymph, juveniles had high lipids. Pre-adults had high glycogen and lipids in the midgut gland, and both high protein and lactate in muscle. In the hemolymph, pre-adults had high lipids. Adults had low glycogen and high lipids in midgut gland, and both high proteins and high lactate in muscle. In hemolymph, adults had high glucose and lactate. Juveniles and pre-adults had high proteinase activity, whereas adults had high lipase activity. Major essential amino acids of SKC were arginine, methionine, and tryptophan, and the non-essential amino acids were glycine, aspartic acid and glutamic acid. On another hand, SKC had similar energy in the midgut gland and muscle, regardless of the ontogenetic stage. Moreover, we demonstrated that the biochemical energy calculation underestimates the actual measured values by a calorimeter. Thus, our results help to understand the physiological changes, energetic and nutritional requirements of L. santolla, and this study is a baseline for research on diet formulation for maintaining this species under culture conditions.

]]>
<![CDATA[Amino acids serve as an important energy source for adult flukes of <i>Clonorchis sinensis</i>]]> https://www.researchpad.co/article/elastic_article_13829 Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.

]]>
<![CDATA[The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae]]> https://www.researchpad.co/article/5c7d95f6d5eed0c484735053

Regulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of Gα subunits, thereby regulating G-protein mediated signal transduction. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, but not MoRgs8, couples with Gα MoMagA to undergo endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobiccues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity.

]]>
<![CDATA[Haralick texture feature analysis for quantifying radiation response heterogeneity in murine models observed using Raman spectroscopic mapping]]> https://www.researchpad.co/article/5c706766d5eed0c4847c6fbd

Tumour heterogeneity plays a large role in the response of tumour tissues to radiation therapy. Inherent biological, physical, and even dose deposition heterogeneity all play a role in the resultant observed response. We here implement the use of Haralick textural analysis to quantify the observed glycogen production response, as observed via Raman spectroscopic mapping, of tumours irradiated within a murine model. While an array of over 20 Haralick features have been proposed, we here concentrate on five of the most prominent features: homogeneity, local homogeneity, contrast, entropy, and correlation. We show that these Haralick features can be used to quantify the inherent heterogeneity of the Raman spectroscopic maps of tumour response to radiation. Furthermore, our results indicate that Haralick-calculated textural features show a statistically significant dose dependent variation in response heterogeneity, specifically, in glycogen production in tumours irradiated with clinically relevant doses of ionizing radiation. These results indicate that Haralick textural analysis provides a quantitative methodology for understanding the response of murine tumours to radiation therapy. Future work in this area can, for example, utilize the Haralick textural features for understanding the heterogeneity of radiation response as measured by biopsied patient tumour samples, which remains the standard of patient tumour investigation.

]]>
<![CDATA[A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism]]> https://www.researchpad.co/article/5c536a77d5eed0c484a4747a

Phototrophic organisms such as cyanobacteria utilize the sun’s energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell’s metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.

]]>
<![CDATA[Increased frequency of rare missense PPP1R3B variants among Danish patients with type 2 diabetes]]> https://www.researchpad.co/article/5c40f7a2d5eed0c4843864e8

Background

PPP1R3B has been suggested as a candidate gene for monogenic forms of diabetes as well as type 2 diabetes (T2D) due to its association with glycaemic trait and its biological role in glycogen synthesis.

Objectives

To study if rare missense variants in PPP1R3B increase the risk of maturity onset diabetes of the young (MODY), T2D or affect measures of glucose metabolism.

Method

Targeted resequencing of PPP1R3B was performed in 8,710 samples; MODY patients with unknown etiology (n = 54), newly diagnosed patients with T2D (n = 2,930) and population-based control individuals (n = 5,726, of whom n = 4,569 had normal glucose tolerance). All population-based sampled individuals were examined using an oral glucose tolerance test.

Results

Among n = 396 carriers, we identified twenty-three PPP1R3B missense mutations, none of which segregated with MODY. The burden of likely deleterious PPP1R3B variants was significantly increased with a total of 17 carriers among patients with T2D (0.58% (95% CI: 0.36–0.93)) compared to 18 carriers among non-diabetic individuals (0.31% (95% CI: 0.20–0.49)), resulting in an increased risk of T2D (OR (95% CI) = 2.57 (1.14–5.79), p = 0.02 (age and sex adjusted)). Furthermore, carriers with diabetes had less abdominal fat and a higher serum concentration of LDL-cholesterol compared to patients with T2D without rare missense PPP1R3B variants. In addition, non-diabetic carriers had a higher birth weight compared to non-carriers.

Conclusion

Rare missense PPP1R3B variants may predispose to T2D.

]]>
<![CDATA[Adenosine stimulates hepatic glycogenolysis via adrenal glands–liver crosstalk in mice]]> https://www.researchpad.co/article/5c269740d5eed0c48470f09f

Adenosine signaling is involved in glucose metabolism in hepatocytes and myocytes in vitro. However, no information is available regarding the effect of adenosine on glucose metabolism in vivo. Thus, we examined how extracellular adenosine acts on glucose metabolism using mice. Subcutaneous injections of adenosine (10, 25, and 50 mg/kg bodyweight) dose-dependently increased blood glucose levels, with the peak occurring at 30 min post injection. At 30 min after adenosine injection (25 mg/kg bodyweight), glycogen content in the liver, but not the skeletal muscle, was significantly decreased. Hepatic glycogen depletion by fasting for 12 h suppressed the increase of blood glucose levels at 30 min after adenosine injection. These results suggest that adenosine increases blood glucose levels by stimulating hepatic glycogenolysis. To investigate the effect of adenosine on the adrenal gland, we studied the glycogenolysis signal in adrenalectomized (ADX) mice. Adenosine significantly increased the blood glucose levels in sham mice but not in the ADX mice. The decrease in hepatic glycogen content induced by adenosine in the sham mice was partially suppressed in the ADX mice. The level of plasma corticosterone, the main glucocorticoid in mice, was significantly increased in the sham mice by adenosine but its levels were low in ADX mice injected with either PBS or adenosine. These results suggest that adenosine promotes secretion of corticosterone from the adrenal glands, which causes hepatic glycogenolysis and subsequently the elevation of blood glucose levels. Our findings are useful for clarifying the physiological functions of adenosine in glucose metabolism in vivo.

]]>
<![CDATA[Benefits of resistance training on body composition and glucose clearance are inhibited by long-term low carbohydrate diet in rats]]> https://www.researchpad.co/article/5c141ef7d5eed0c484d290e5

Background/Objectives

Regular exercise training is effective to altering many markers of metabolic syndrome and its effects are strongly influenced by the type of consumed diet. Nowadays, resistance training (RT) has been frequently associated with low-carbohydrate high-fat diet (LCD). After long term these diets causes body weight (BW) regain with deleterious effects on body composition and metabolic risk factors. The effects of RT associated with long-term LCD on these parameters remain unexplored. We aimed to investigate the effects of RT when associated with long-term LCD on BW, feed efficiency, body composition, glucose homeostasis, liver parameters and serum biochemical parameters during BW regain period in rats.

Subjects/Methods

Male Sprague–Dawley rats were fed with LCD (LC groups) or standard diet (STD) (ST groups). After 10 weeks-diet animals were separated into sedentary (Sed-LC and Sed-ST) and resistance-trained (RT-LC and RT-ST) groups (N = 8/group). RT groups performed an 11-week climbing program on a ladder with progressive load. Dual x-ray absorptiometry, glucose tolerance tests and insulin tolerance tests were performed at weeks 10 and 20. Liver and serum were collected at week 21.

Results

RT reduced feed efficiency, BW gain, liver fat and total and LDL cholesterol, and improved body composition and glucose clearance in animals fed on STD. In those fed with LCD, RT reduced caloric intake, BW regain, liver fat and serum triglycerides levels. However, improvement in body composition was inhibited and bone mineral density and glucose clearance was further impaired in this association.

Conclusions

The LCD nullifies the beneficial effects of RT on body composition, glucose homeostasis and impairs some health parameters. Our results do not support the association of RT with LCD in a long term period.

]]>
<![CDATA[Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli]]> https://www.researchpad.co/article/5989db18ab0ee8fa60bcd808

In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.

]]>
<![CDATA[Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens]]> https://www.researchpad.co/article/5989dabcab0ee8fa60baef5f

This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47–48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR < 0.1 and fold-change A/U > 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.

]]>
<![CDATA[Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases]]> https://www.researchpad.co/article/5989da53ab0ee8fa60b8e3c1

Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding ‘signaling’ proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.

]]>
<![CDATA[Effect of Portal Glucose Sensing on Systemic Glucose Levels in SD and ZDF Rats]]> https://www.researchpad.co/article/5989da28ab0ee8fa60b81939

Background

The global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor.

Methods

Systemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured.

Results

αMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions.

Conclusions

The portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery.

]]>
<![CDATA[Dapagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, Acutely Reduces Energy Expenditure in BAT via Neural Signals in Mice]]> https://www.researchpad.co/article/5989daffab0ee8fa60bc5f4f

Selective sodium glucose cotransporter-2 inhibitor (SGLT2i) treatment promotes urinary glucose excretion, thereby reducing blood glucose as well as body weight. However, only limited body weight reductions are achieved with SGLT2i treatment. Hyperphagia is reportedly one of the causes of this limited weight loss. However, the effects of SGLT2i treatment on systemic energy expenditure have not been fully elucidated. Herein, we investigated the acute effects of dapagliflozin, a SGLT2i, on systemic energy expenditure in mice. Eighteen hours after dapagliflozin treatment oxygen consumption and brown adipose tissue (BAT) expression of ucp1, a thermogenesis-related gene, were significantly decreased as compared to those after vehicle treatment. In addition, dapagliflozin significantly suppressed norepinephrine (NE) turnover in BAT and c-fos expression in the rostral raphe pallidus nucleus (rRPa) which contains the sympathetic premotor neurons responsible for thermogenesis. These findings indicate that the dapagliflozin-mediated acute decrease in energy expenditure involves a reduction in BAT thermogenesis via decreased sympathetic nerve activity from the rRPa. Furthermore, common hepatic branch vagotomy abolished the reductions in ucp1 expression and NE contents in BAT and c-fos expression in the rRPa. In addition, alterations in hepatic carbohydrate metabolism, such as decreases in glycogen contents and upregulation of phosphoenolpyruvate carboxykinase, manifested prior to the suppression of BAT thermogenesis, e.g. 6 hours after dapagliflozin treatment. Collectively, these results suggest that SGLT2i treatment acutely suppresses energy expenditure in BAT via regulation of an inter-organ neural network consisting of the common hepatic vagal branch and sympathetic nerves.

]]>
<![CDATA[Rationale and Safety Assessment of a Novel Intravaginal Drug-Delivery System with Sustained DL-Lactic Acid Release, Intended for Long-Term Protection of the Vaginal Microbiome]]> https://www.researchpad.co/article/5989da41ab0ee8fa60b8a162

Bacterial vaginosis is a prevalent state of dysbiosis of the vaginal microbiota with wide-ranging impact on human reproductive health. Based on recent insights in community ecology of the vaginal microbiome, we hypothesize that sustained vaginal DL-lactic acid enrichment will enhance the recruitment of lactobacilli, while counteracting bacterial vaginosis-associated bacteria. We therefore aimed to develop an intravaginal device that would be easy to insert and remove, while providing sustained DL-lactic acid release into the vaginal lumen. The final prototype selected is a vaginal ring matrix system consisting of a mixture of ethylene vinyl acetate and methacrylic acid-methyl methacrylate copolymer loaded with 150 mg DL-lactic acid with an L/D-lactic acid ratio of 1:1. Preclinical safety assessment was performed by use of the Slug Mucosal Irritation test, a non-vertebrate assay to evaluate vaginal mucosal irritation, which revealed no irritation. Clinical safety was evaluated in a phase I trial with six healthy nulliparous premenopausal volunteering women, with the investigational drug left in place for 7 days. Colposcopic monitoring according to the WHO/CONRAD guidelines for the evaluation of vaginal products, revealed no visible cervicovaginal mucosal changes. No adverse events related to the investigational product occurred. Total release from the intravaginal ring over 7 days was estimated through high performance liquid chromatography at 37.1 (standard deviation 0.9) mg DL-lactic acid. Semisolid lactic acid formulations have been studied to a limited extent in the past and typically consist of a large volume of excipients and very high doses of lactic acid, which is of major concern to mucosal safety. We have documented the feasability of enriching the vaginal environment with pure DL-lactic acid with a prototype intravaginal ring. Though the efficacy of this platform remains to be established possibly requiring further development, this approach may offer a novel avenue to modulate and protect the vaginal microbiota.

Trial Registration

U.S. National Institutes of Health ClinicalTrials.gov NCT02314429

]]>
<![CDATA[Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day]]> https://www.researchpad.co/article/5989da24ab0ee8fa60b8033b

Intake of protein immediately after exercise stimulates protein synthesis but improved recovery of performance is not consistently observed. The primary aim of the present study was to compare performance 18 h after exhaustive cycling in a randomized diet-controlled study (175 kJ·kg-1 during 18 h) when subjects were supplemented with protein plus carbohydrate or carbohydrate only in a 2-h window starting immediately after exhaustive cycling. The second aim was to investigate the effect of no nutrition during the first 2 h and low total energy intake (113 kJ·kg-1 during 18 h) on performance when protein intake was similar. Eight endurance-trained subjects cycled at 237±6 Watt (~72% VO2max) until exhaustion (TTE) on three occasions, and supplemented with 1.2 g carbohydrate·kg-1·h-1 (CHO), 0.8 g carbohydrate + 0.4 g protein·kg-1·h-1 (CHO+PRO) or placebo without energy (PLA). Intake of CHO+PROT increased plasma glucose, insulin, and branch chained amino acids, whereas CHO only increased glucose and insulin. Eighteen hours later, subjects performed another TTE at 237±6 Watt. TTE was increased after intake of CHO+PROT compared to CHO (63.5±4.4 vs 49.8±5.4 min; p<0.05). PLA reduced TTE to 42.8±5.1 min (p<0.05 vs CHO). Nitrogen balance was positive in CHO+PROT, and negative in CHO and PLA. In conclusion, performance was higher 18 h after exhaustive cycling with intake of CHO+PROT compared to an isocaloric amount of carbohydrate during the first 2 h post exercise. Intake of a similar amount of protein but less carbohydrate during the 18 h recovery period reduced performance.

]]>
<![CDATA[The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism]]> https://www.researchpad.co/article/5989da11ab0ee8fa60b79c8e

Objective

A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle.

Methods

Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc.

Results

Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and –3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon.

Conclusion

The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in working skeletal muscle. ACE-DD genotypes thereby transit into a pre-diabetic state with exhaustive exercise, which relates to a lowered muscle capillarisation, and deregulation of mitochondria-associated metabolism.

]]>
<![CDATA[Hepatic Effects of Pharmacological Doses of Hydroxy-Cobalamin[c-lactam] in Mice]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb89f

The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs hepatic mitochondrial protein synthesis and function of the electron transport chain in rats. We aimed to establish an in vivo model for mitochondrial dysfunction in mice, which could be used to investigate hepatotoxicity of mitochondrial toxicants. In a first step, we performed a dose-finding study in mice treated with HCCL 0.4 mg/kg and 4 mg/kg i.p. for two to four weeks. The plasma methylmalonate concentration was strongly increased at 4 mg/kg starting at three weeks of treatment. We subsequently treated mice daily with 4 mg/kg HCCL i.p. for three weeks and characterized liver function and histology as well as liver mitochondrial function. We found an increase in liver weight in HCCL-treated mice, which was paralleled by hepatocellular accumulation of triglycerides. In liver homogenate of HCCL-treated mice, the complex I activity of the electron transport chain was reduced, most likely explaining hepatocellular triglyceride accumulation. The activity of CPT1 was not affected by methylmalonyl-CoA in isolated liver mitochondria. Despite impaired complex I activity, mitochondrial superoxide anion production was not increased and the hepatocellular glutathione (GSH) pool was maintained. Finally, the mitochondrial DNA content was not altered with HCCL treatment. In conclusion, treatment of mice with HCCL is associated with increased liver weight explained by hepatocellular triglyceride accumulation. Hepatocellular fat accumulation is most likely a consequence of impaired activity of the mitochondrial electron transport chain. The impairment of complex I activity is not strong enough to result in ROS accumulation and reduction of the GSH stores.

]]>
<![CDATA[Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness]]> https://www.researchpad.co/article/5989da12ab0ee8fa60b7a14e

Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.

]]>
<![CDATA[Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdffe0

The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.

]]>
<![CDATA[The Effects of Transdermally Delivered Oleanolic Acid on Malaria Parasites and Blood Glucose Homeostasis in P. berghei-Infected Male Sprague-Dawley Rats]]> https://www.researchpad.co/article/5989d9ddab0ee8fa60b68564

The present study investigated the effects of transdermally delivered oleanolic acid (OA) monotherapy and in combination with chloroquine (CHQ) on malaria parasites and glucose homeostasis of P. berghei-infected male Sprague-Dawley rats. Oral glucose test (OGT) responses to OA-pectin patch and CHQ-OA combination matrix patch were monitored in non-infected and infected rats. To evaluate the short-term effects of treatment, percentage parasitaemia, blood glucose, glycogen and plasma insulin were monitored in separate groups of animals treated with either OA-patch monotherapy or CHQ-OA combination pectin patch over a 21-days period. Animals treated with drug-free pectin and CHQ acted as untreated and treated positive controls, respectively. Infected control rats exhibited significantly increased parasitaemia which was accompanied by hypoglycaemia. Both OA monotherapy and CHQ-OA combination therapy reduced and cleared the malaria parasites within a period of 4 and 3 days, respectively. Compared to respective controls groups, OGT responses of animals treated with OA monotherapy or CHQ-OA combination therapy exhibited lower blood glucose levels at all time points. A once-off transdermal application of OA-patch or CHQ-OA combination patch significantly improved blood glucose concentrations inducing any changes in insulin concentration. Transdermal OA used as a monotherapy or in combination with CHQ is able to clear and reduce the malaria parasites within a shorter period of time without eliciting any adverse effects on glucose homeostasis of P. berghei-infected rats.

]]>