ResearchPad - granulosa-cells https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A grape seed extract maternal dietary supplementation improves egg quality and reduces ovarian steroidogenesis without affecting fertility parameters in reproductive hens]]> https://www.researchpad.co/article/elastic_article_14599 In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.

]]>
<![CDATA[OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc164

An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese.

]]>
<![CDATA[Molecular and genetic characterization of partial masculinization in embryonic ovaries grafted into male nude mice]]> https://www.researchpad.co/article/5c8977afd5eed0c4847d330e

In most of mammalian embryos, gonadal sex differentiation occurs inside the maternal uterus before birth. In several fetal ovarian grafting experiments using male host mice, an experimental switch from the maternal intrauterine to male-host environment gradually induces partial masculinization of the grafted ovaries even under the wild-type genotype. However, either host-derived factors causing or molecular basis underlying this masculinization of the fetal ovaries are not clear. Here, we demonstrate that ectopic appearance of SOX9-positive Sertoli cell-like cells in grafted ovaries was mediated by the testosterone derived from the male host. Neither Sox8 nor Amh activity in the ovarian tissues is essential for such ectopic appearance of SOX9-positive cells. The transcriptome analyses of the grafted ovaries during this masculinization process showed early downregulation of pro-ovarian genes such as Irx3, Nr0b1/Dax1, Emx2, and Fez1/Lzts1 by days 7–10 post-transplantation, and subsequent upregulation of several pro-testis genes, such as Bhlhe40, Egr1/2, Nr4a2, and Zc3h12c by day 20, leading to a partial sex reversal with altered expression profiles in one-third of the total numbers of the sex-dimorphic pre-granulosa and Sertoli cell-specific genes at 12.5 dpc. Our data imply that the paternal testosterone exposure is partially responsible for the sex-reversal expression profiles of certain pro-ovarian and pro-testis genes in the fetal ovaries in a temporally dependent manner.

]]>
<![CDATA[Reduced RNA expression of the FMR1 gene in women with low (CGGn<26) repeats]]> https://www.researchpad.co/article/5c26976fd5eed0c48470f84f

Low FMR1 variants (CGGn<26) have been associated with premature ovarian aging, female infertility and poor IVF treatment success. Until now, there is little published information concerning possible molecular mechanisms for this effect. We wished to examine whether relative expression of RNA and the FMR1 gene’s fragile X mental retardation protein (FMRP) RNA isoforms differ in women with various FMR1 sub-genotypes (normal, low CGGn<26 and/or high CGGn≥34). This prospective cohort study was conducted between 2014 and 2017 in a clinical research unit of the Center for Human Reproduction in New York City. The study involved a total of 98 study subjects, including 18 young oocyte donors and 80 older infertility patients undergoing routine in vitro fertilization (IVF) cycles. The main outcome measure was RNA expression in human luteinized granulosa cells of 5 groups of FMRP isoforms. The relative expression of FMR1 RNA in human luteinized granulosa cells was measured by real-time PCR and a possible association with CGGn was explored. All 5 groups of FMRP RNA isoforms examined were found to be differentially expressed in human luteinized granulosa cells. The relative expression of four FMR1 RNA isoforms showed significant differences among 6 FMR1 sub-genotypes. Women with at least one low allele expressed significantly lower levels of all 5 sets of FRMP isoforms in comparison to the non-low group. While it would be of interest to see whether FMRP is also decreased in the low-group we recognize that in recent years it has been increasingly documented that information flow of genetics may be regulated by non-coding RNA, that is, without translation to a protein product. We, thus, conclude that various CGG expansions of FMR1 allele may lead to changes of RNA levels and ratios of distinct FMRP RNA isoforms, which could regulate the translation and/or cellular localization of FMRP, affect the expression of steroidogenic enzymes and hormonal receptors, or act in some other epigenetic process and therefore result in the ovarian dysfunction in infertility.

]]>
<![CDATA[The role of AKT and FOXO3 in preventing ovarian toxicity induced by cyclophosphamide]]> https://www.researchpad.co/article/5b6da1aa463d7e4dccc5fae8

Cyclophosphamide (CTX) has immunosuppressive effects and has been wildly used as one anti-cancer drug in clinical. Significant toxicity has been noticed particularly in the reproductive system. CTX promotes the maturation of ovarian follicles, decreases follicular reserve, and ultimately lead to ovarian failure or even premature ovarian failure (POF). The placental extract (HPE) has been shown to have some beneficial impact on reproductive system; however, little is known regarding to the effect of HPE on protecting CTX-induced ovarian injury and the mechanism involved. Whether human placental extracts (HPE) has a protective effect on CTX-induced toxicity on ovarian was studied by using a CTX-induced ovarian injury animal model. The effects of HEP on histopathology, the number of atretic follicles, the weight of the ovary, serum hormone levels, and apoptosis in granulosa cells were studied in mice with CTX or control vehicle. Our results have demonstrated that HPE inhibited p-Rictor, reduced the expression of Bad, Bax and PPAR, and activated Akt and Foxo3a (increased their phosphorylation). Mice treated with HPE showed higher ovarian weight, lower number of atretic follicles, higher serum levels of the hormones E2 and progesterone, and lower apoptosis and serum levels of LH and FSH in granulosa cells, than that in the control animal group. Our data show that ovarian injury can be attenuated by HPE. HPE likely protects follicular granulosa cells from undergoing significant apoptosis and reduce atresia follicle formation, therefore, alleviates CTX-induced ovarian injury.

]]>
<![CDATA[A Novel igf3 Gene in Common Carp (Cyprinus carpio): Evidence for Its Role in Regulating Gonadal Development]]> https://www.researchpad.co/article/5989da7bab0ee8fa60b9888b

Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development.

]]>
<![CDATA[GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary]]> https://www.researchpad.co/article/5989db54ab0ee8fa60bdd10a

Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.

]]>
<![CDATA[Regulatory Mechanisms Underlying the Expression of Prolactin Receptor in Chicken Granulosa Cells]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdce58

Prolactin (PRL) has both pro- and anti-gonadal roles in the regulation of avian ovarian functions through its interaction with the receptor (PRLR). However, neither the pattern of expression of PRLR nor its regulatory mechanisms during follicle development have been clearly defined. The objective of the present study was to investigate mechanisms of PRLR expression in chicken granulosa cells. Levels of PRLR transcript were highest in the stroma and walls of follicles < 2 mm in diameter and progressively declined with the maturation of follicles. In preovulatory follicles, PRLR was expressed at higher levels in granulosa than theca layers. FSH exerted the greatest stimulatory effect on PRLR and StAR expression in cultured granulosa cells of the 6–8 mm follicles but this effect declined as follicles matured to F1. In contrast, LH did not alter the expression of PRLR in granulosa cells of all follicular classes but increased levels of StAR in F2 and F1 granulosa cells. Both non-glycosylated- (NG-) and glycosylated- (G-) PRL upregulated basal PRLR expression in granulosa cells of the 6–8 mm, F3 or F1 follicles but had little effect in F2 follicles. Furthermore, FSH-stimulated PRLR expression was reduced by the addition of either isoform of PRL especially in F2 granulosa cells. These results indicate that PRLR is differentially distributed and regulated by FSH or PRL variants independently or in combination in the follicular hierarchy. By using activators and inhibitors, we further demonstrated that multiple signaling pathways, including PKA, PKC, PI3K, mTOR and AMPK, are not only directly involved in, but they can also converge to modulate ERK2 activity to regulate FSH-mediated PRLR and StAR expression in undifferentiated granulosa cells. These data provide new insights into the regulatory mechanisms controlling the expression of PRLR in granulosa cells.

]]>
<![CDATA[Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway]]> https://www.researchpad.co/article/5989db0bab0ee8fa60bca3b6

The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs.

]]>
<![CDATA[The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary]]> https://www.researchpad.co/article/5989da39ab0ee8fa60b8724c

The Hippo/MST signaling pathway is a critical player in controlling cell proliferation, self-renewal, differentiation, and apoptosis of most tissues and organs in diverse species. Previous studies have shown that Salvador homolog 1 (SAV1), a scaffolding protein which functions in the signaling system is expressed in mammalian ovaries and play a vital role in governing the follicle development. But the exact biological effects of chicken SAV1 in prehierarchical follicle development remain poorly understood. In the present study, we demonstrated that the SAV1 protein is predominantly expressed in the oocytes and undifferentiated granulosa cells in the various sized prehierarchical follicles of hen ovary, and the endogenous expression level of SAV1 mRNA appears down-regulated from the primordial follicles to the largest preovulatory follicles (F2-F1) by immunohistochemistry and real-time RT-PCR, respectively. Moreover, we found the intracellular SAV1 physically interacts with each of the pathway members, including STK4/MST1, STK3/MST2, LATS1 and MOB2 using western blotting. And SAV1 significantly promotes the phosphorylation of LATS1 induced by the kinase of STK4 or STK3 in vitro. Furthermore, SAV1 knockdown by small interfering RNA (siRNA) significantly increased proliferation of granulosa cells from the prehierarchical follicles (6–8 mm in diameter) by BrdU-incorporation assay, in which the expression levels of GDF9, StAR and FSHR mRNA was notably enhanced. Meanwhile, these findings were consolidated by the data of SAV1 overexpression. Taken together, the present results revealed that SAV1 can inhibit proliferation of the granulosa cells whereby the expression levels of GDF9, StAR and FSHR mRNA were negatively regulated. Accordingly, SAV1, as a member of the hippo/MST signaling pathway plays a suppressive role in ovarian follicle development by promoting phosphorylation and activity of the downstream LATS1, may consequently lead to prevention of the follicle selection during ovary development.

]]>
<![CDATA[Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring]]> https://www.researchpad.co/article/5989da03ab0ee8fa60b74ea0

Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

]]>
<![CDATA[Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells]]> https://www.researchpad.co/article/5989da66ab0ee8fa60b91dc3

Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.

]]>
<![CDATA[Simulated Microgravity Using a Rotary Culture System Compromises the In Vitro Development of Mouse Preantral Follicles]]> https://www.researchpad.co/article/5989daceab0ee8fa60bb53cf

Background

Growing cells in simulated weightlessness condition might be a highly promising new technique to maintain or generate tissue constructs in a scaffold-free manner. There is limited evidence that microgravity condition may affect development of ovarian follicles. The objective of the present study was to investigate the effects of simulated microgravity on the in vitro development of mouse preantral follicles.

Methods and Results

Ovarian tissue from 14-day-old mice, or preantral follicles mechanically isolated from 14-day-old mouse ovaries were cultured at a simulated microgravity condition generated using a rotating wall vessel apparatus. Follicle survival was assessed quantitatively using H&E staining. Follicle diameter and oocyte diameter were measured under an inverted microscope. Ultrastructure of oocytes was evaluated using transmission electron microscopy. We observed that simulated microgravity compromised follicle survival in vitro, downregulated PCNA and GDF-9 expressions, and caused ultrastructural abnormalities in oocytes.

Conclusion

This study showed for the first time that three-dimensional culture condition generated by simulated microgravity is detrimental to the initial stage development of mouse preantral follicles in vitro. The experimental setup provides a model to further investigate the mechanisms involved in the in vitro developmental processes of oocytes/granulosa cells under the microgravity condition.

]]>
<![CDATA[Control of Oocyte Reawakening by Kit]]> https://www.researchpad.co/article/5989dae0ab0ee8fa60bbb7aa

In mammals, females are born with finite numbers of oocytes stockpiled as primordial follicles. Oocytes are “reawakened” via an ovarian-intrinsic process that initiates their growth. The forkhead transcription factor Foxo3 controls reawakening downstream of PI3K-AKT signaling. However, the identity of the presumptive upstream cell surface receptor controlling the PI3K-AKT-Foxo3 axis has been questioned. Here we show that the receptor tyrosine kinase Kit controls reawakening. Oocyte-specific expression of a novel constitutively-active KitD818V allele resulted in female sterility and ovarian failure due to global oocyte reawakening. To confirm this result, we engineered a novel loss-of-function allele, KitL. Kit inactivation within oocytes also led to premature ovarian failure, albeit via a contrasting phenotype. Despite normal initial complements of primordial follicles, oocytes remained dormant with arrested oocyte maturation. Foxo3 protein localization in the nucleus versus cytoplasm explained both mutant phenotypes. These genetic studies provide formal genetic proof that Kit controls oocyte reawakening, focusing future investigations into the causes of primary ovarian insufficiency and ovarian aging.

]]>
<![CDATA[The Tyrosine Kinase Inhibitor Sunitinib Affects Ovulation but Not Ovarian Reserve in Mouse: A Preclinical Study]]> https://www.researchpad.co/article/5989d9f4ab0ee8fa60b6fac7

The aim of the study was to evaluate ovarian toxicity of tyrosine kinase inhibitor (TKI) sunitinib, since only scarce data are available on gonadal function after this treatment. Six-week-old female mice received orally, once daily, vehicle or sunitinib (50 mg/kg/d) during 5 weeks. Fertility parameters were analyzed from ovulation to litter assessment. Sunitinib exposure significantly reduced (i) corpora lutea number per ovary (1.1 ± 0.38 in sunitinib group versus 4 ± 0.79 in control group, p<0.01) and (ii) serum Anti Müllerian hormone (AMH) levels in sunitinib treated mice (12.01 ± 1.16) compared to control mice (14.33 ± 0.87 ng/ml, p< 0.05). However, primordial and growing follicles numbers per ovary were not different in both groups. After treatment withdrawal, female mice in both groups were able to obtain litters. These data could be helpful to counsel clinicians and patients, when fertility preservation methods are discussed, before TKI treatment in girls and young women.

]]>
<![CDATA[Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish]]> https://www.researchpad.co/article/5989daf1ab0ee8fa60bc142d

Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.

]]>
<![CDATA[Identification of potential biomarkers in donor cows for in vitro embryo production by granulosa cell transcriptomics]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc82b

The Ovum Pick Up-In vitro Production (OPU-IVP) of embryos is an advanced reproductive technology used in cattle production but the complex biological mechanisms behind IVP outcomes are not fully understood. In this study we sequenced RNA of granulosa cells collected from Holstein cows at oocyte aspiration prior to IVP, to identify candidate genes and biological mechanisms for favourable IVP-related traits in donor cows where IVP was performed separately for each animal. We identified 56 genes significantly associated with IVP scores (BL rate, kinetic and morphology). Among these, BEX2, HEY2, RGN, TNFAIP6 and TXNDC11 were negatively associated while Mx1 and STC1 were positively associated with all IVP scores. Functional analysis highlighted a wide range of biological mechanisms including apoptosis, cell development and proliferation and four key upstream regulators (COX2, IL1, PRL, TRIM24) involved in these mechanisms. We found a range of evidence that good IVP outcome is positively correlated with early follicular atresia. Furthermore we showed that high genetic index bulls can be used in breeding without reducing the IVP performances. These findings can contribute to the development of biomarkers from follicular fluid content and to improving Genomic Selection (GS) methods that utilize functional information in cattle breeding, allowing a widespread large scale application of GS-IVP.

]]>
<![CDATA[Transcriptomal profiling of bovine ovarian granulosa and theca interna cells in primary culture in comparison with their in vivo counterparts]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbf12

In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the ‘follicular’ phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3–6 mm) and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA) and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data.

]]>
<![CDATA[The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction]]> https://www.researchpad.co/article/5989da10ab0ee8fa60b7966c

Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.

]]>
<![CDATA[Ovarian Toxicity in Female Rats after Oral Administration of Melamine or Melamine and Cyanuric Acid]]> https://www.researchpad.co/article/5989da03ab0ee8fa60b74bb2

Although the toxicity of melamine to the kidneys and testes is well known, few studies have investigated the effects of melamine on female reproductive organs. Therefore, this study explores the effects of oral administration melamine or melamine and cyanuric acid for 28 days on the ovaries of female rats. Rats that were exposed to the mixture exhibited reduced ovarian and uterine weights, a shorter estrous cycle, and reduced serum estrogen and progesterone levels compared to rats that were exposed to melamine and control rats. Furthermore, morphological analysis revealed pathological changes in the ovaries of rats exposed to melamine or the mixture, such as more atretic follicles and necrosis of oocytes and granulosa cells. TUNEL staining revealed that the exposed groups had a higher proportion of TUNEL-positive granulosa cells than the control group, and the mRNA expressions of SOD1, GPX1, GPX2, P450scc, 17β-HSD I, and 17β-HSD II were reduced in the exposure groups compared with the control group. These results indicated that exposure to melamine alone or to the melamine-cyanuric acid mixture could damage the ovaries in rats.

]]>