ResearchPad - green-fluorescent-protein https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger]]> https://www.researchpad.co/article/elastic_article_7872 When others stop and silence ensues, animals respond as if threatened. This study highlights the brain areas involved in listening to the dangerous silence.

]]>
<![CDATA[Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus]]> https://www.researchpad.co/article/5c897773d5eed0c4847d2d2c

The split GFP technique is based on the auto-assembly of GFP when two polypeptides–GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.

]]>
<![CDATA[Enhanced in vivo-imaging in medaka by optimized anaesthesia, fluorescent protein selection and removal of pigmentation]]> https://www.researchpad.co/article/5c9902e5d5eed0c484b98849

Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.

]]>
<![CDATA[A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites]]> https://www.researchpad.co/article/5c648d3cd5eed0c484c82311

Endosymbiosis has driven major molecular and cellular innovations. Plasmodium spp. parasites that cause malaria contain an essential, non-photosynthetic plastid—the apicoplast—which originated from a secondary (eukaryote–eukaryote) endosymbiosis. To discover organellar pathways with evolutionary and biomedical significance, we performed a mutagenesis screen for essential genes required for apicoplast biogenesis in Plasmodium falciparum. Apicoplast(−) mutants were isolated using a chemical rescue that permits conditional disruption of the apicoplast and a new fluorescent reporter for organelle loss. Five candidate genes were validated (out of 12 identified), including a triosephosphate isomerase (TIM)-barrel protein that likely derived from a core metabolic enzyme but evolved a new activity. Our results demonstrate, to our knowledge, the first forward genetic screen to assign essential cellular functions to unannotated P. falciparum genes. A putative TIM-barrel enzyme and other newly identified apicoplast biogenesis proteins open opportunities to discover new mechanisms of organelle biogenesis, molecular evolution underlying eukaryotic diversity, and drug targets against multiple parasitic diseases.

]]>
<![CDATA[The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7]]> https://www.researchpad.co/article/5c59feebd5eed0c4841357c1

Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)–interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19–cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.

]]>
<![CDATA[MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis]]> https://www.researchpad.co/article/5c23f305d5eed0c484049ed6

Mutations of WD repeat domain 62 (WDR62) lead to autosomal recessive primary microcephaly (MCPH), and down-regulation of WDR62 expression causes the loss of neural progenitor cells (NPCs). However, how WDR62 is regulated and hence controls neurogenesis and brain size remains elusive. Here, we demonstrate that mitogen-activated protein kinase kinase kinase 3 (MEKK3) forms a complex with WDR62 to promote c-Jun N-terminal kinase (JNK) signaling synergistically in the control of neurogenesis. The deletion of Mekk3, Wdr62, or Jnk1 resulted in phenocopied defects, including premature NPC differentiation. We further showed that WDR62 protein is positively regulated by MEKK3 and JNK1 in the developing brain and that the defects of wdr62 deficiency can be rescued by the transgenic expression of JNK1. Meanwhile, WDR62 is also negatively regulated by T1053 phosphorylation, leading to the recruitment of F-box and WD repeat domain-containing protein 7 (FBW7) and proteasomal degradation. Our findings demonstrate that the coordinated reciprocal and bidirectional regulation among MEKK3, FBW7, WDR62, and JNK1, is required for fine-tuned JNK signaling for the control of balanced NPC self-renewal and differentiation during cortical development.

]]>
<![CDATA[Deep learning image recognition enables efficient genome editing in zebrafish by automated injections]]> https://www.researchpad.co/article/5c3d011cd5eed0c484038663

One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 μm to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research.

]]>
<![CDATA[Quantitative comparison of the neutralizing capacity, immunogenicity and cross-reactivity of anti-TNF-α biologicals and an Infliximab-biosimilar]]> https://www.researchpad.co/article/5c1966ebd5eed0c484b53548

Introduction

TNF-α-neutralizing antibodies, such as infliximab (IFX) and adalimumab (ADA), are effective in the treatment of inflammatory bowel diseases (IBD), but they are expensive and become ineffective when patients develop anti-IFX or anti-ADA antibodies (ATI and ATA, respectively). Second-generation anti-TNF-α antibodies, such as Golimumab, Etanercept, Certolizumab-pegol and IFX biosimilars, may solve these issues.

Aim

To determine the neutralizing capacity of first- and second generation anti-TNF-α antibodies and to determine whether ATI show cross-reactivity with the IFX biosimilar CT-P13 (Inflectra).

Methods

TNF-α neutralization was measured using a quantitative TNF-α sensor assay consisting of HeLa 8D8 cells that express the Green Fluorescence Protein (GFP) under control of a NF-кB response element. All available anti-TNF-α drugs and the IFX biosimilar CT-P13 (Inflectra) were tested for their TNF-α-neutralizing capacity. In addition, patient sera with ATI were tested for their potential to block the activity of IFX, IFX (F)ab2-fragment, biosimilar CT-P13 (Inflectra) and ADA.

Results

TNF-α strongly induced GFP expression in Hela 8D8 cells. Higher concentrations of first-generation anti-TNF-α drugs were required to neutralize TNF-α compared to the second-generation anti-TNF-α drugs. Serum of IBD patients with proven ATI blocked TNF-α-neutralizing properties of IFX biosimilar CT-P13 (Inflectra), whereas such sera did not block the effect of ADA.

Conclusion

The second-generation anti-TNF-α drugs show increased TNF-α-neutralizing potential compared to first-generation variants. ATI show cross-reactivity toward IFX biosimilar CT-P13 (Inflectra), consequently patients with ATI are unlikely to benefit from treatment with this IFX biosimilar.

]]>
<![CDATA[Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins]]> https://www.researchpad.co/article/5c084205d5eed0c484fcb81a

The discovery and use of fluorescent proteins revolutionized cell biology by allowing the visualization of proteins in living cells. Advances in fluorescent proteins, primarily through genetic engineering, have enabled more advanced analyses, including Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) and the development of genetically encoded fluorescent biosensors. These fluorescence protein-based sensors are highly effective in cells grown in monolayer cultures. However, it is often desirable to use more complex models including tissue explants, organoids, xenografts, and whole animals. These types of samples have poor light penetration owing to high scattering and absorption of light by tissue. Far-red light with a wavelength between 650-900nm is less prone to scatter, and absorption by tissues and can thus penetrate more deeply. Unfortunately, there are few fluorescent proteins in this region of the spectrum, and they have sub-optimal fluorescent properties including low brightness and short fluorescence lifetimes. Understanding the relationships between the amino-acid sequences of far-red fluorescence proteins and their photophysical properties including peak emission wavelengths and fluorescence lifetimes would be useful in the design of new fluorescence proteins for this region of the spectrum. We used both site-directed mutagenesis and gene-shuffling between mScarlet and mCardinal fluorescence proteins to create new variants and assess their properties systematically. We discovered that for far-red, GFP-like proteins the emission maxima and fluorescence lifetime have a strong inverse correlation.

]]>
<![CDATA[Illuminating pathogen–host intimacy through optogenetics]]> https://www.researchpad.co/article/5b5ff78f463d7e28ade495c3

The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host–pathogen interactions in a way that has not been feasible otherwise.

]]>
<![CDATA[Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth]]> https://www.researchpad.co/article/5b04166f463d7e0b28e418aa

The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2–associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53.

]]>
<![CDATA[UMG Lenti: Novel Lentiviral Vectors for Efficient Transgene- and Reporter Gene Expression in Human Early Hematopoietic Progenitors]]> https://www.researchpad.co/article/5989da28ab0ee8fa60b81522

Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.

]]>
<![CDATA[Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope]]> https://www.researchpad.co/article/5989daf1ab0ee8fa60bc13bd

PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.

]]>
<![CDATA[Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number]]> https://www.researchpad.co/article/5ab184b3463d7e5ca175d93c

Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens.

]]>
<![CDATA[The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbc4b

Nicotiana benthamiana is employed around the world for many types of research and one transgenic line has been used more extensively than any other. This line, 16c, expresses the Aequorea victoria green fluorescent protein (GFP), highly and constitutively, and has been a major resource for visualising the mobility and actions of small RNAs. Insights into the mechanisms studied at a molecular level in N. benthamiana 16c are likely to be deeper and more accurate with a greater knowledge of the GFP gene integration site. Therefore, using next generation sequencing, genome mapping and local alignment, we identified the location and characteristics of the integrated T-DNA. As suggested from previous molecular hybridisation and inheritance data, the transgenic line contains a single GFP-expressing locus. However, the GFP coding sequence differs from that originally reported. Furthermore, a 3.2 kb portion of a transposon, appears to have co-integrated with the T-DNA. The location of the integration mapped to a region of the genome represented by Nbv0.5scaffold4905 in the www.benthgenome.com assembly, and with less integrity to Niben101Scf03641 in the www.solgenomics.net assembly. The transposon is not endogenous to laboratory strains of N. benthamiana or Agrobacterium tumefaciens strain GV3101 (MP90), which was reportedly used in the generation of line 16c. However, it is present in the popular LBA4404 strain. The integrated transposon sequence includes its 5’ terminal repeat and a transposase gene, and is immediately adjacent to the GFP gene. This unexpected genetic arrangement may contribute to the characteristics that have made the 16c line such a popular research tool and alerts researchers, taking transgenic plants to commercial release, to be aware of this genomic hitchhiker.

]]>
<![CDATA[The Trypanosome Nuclear Pore Reveals 1.5 Billion Years of Similarities and Differences]]> https://www.researchpad.co/article/5989da4dab0ee8fa60b8d2f8

Comparison of the nuclear pore complex from trypanosomes with those of animals, plants, and fungi offers new insights into this quintessential eukaryotic structure. Read the accompanying Research Article.

]]>
<![CDATA[Parallel reorganization of protein function in the spindle checkpoint pathway through evolutionary paths in the fitness landscape that appear neutral in laboratory experiments]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf298

Regulatory networks often increase in complexity during evolution through gene duplication and divergence of component proteins. Two models that explain this increase in complexity are: 1) adaptive changes after gene duplication, such as resolution of adaptive conflicts, and 2) non-adaptive processes such as duplication, degeneration and complementation. Both of these models predict complementary changes in the retained duplicates, but they can be distinguished by direct fitness measurements in organisms with short generation times. Previously, it has been observed that repeated duplication of an essential protein in the spindle checkpoint pathway has occurred multiple times over the eukaryotic tree of life, leading to convergent protein domain organization in its duplicates. Here, we replace the paralog pair in S. cerevisiae with a single-copy protein from a species that did not undergo gene duplication. Surprisingly, using quantitative fitness measurements in laboratory conditions stressful for the spindle-checkpoint pathway, we find no evidence that reorganization of protein function after gene duplication is beneficial. We then reconstruct several evolutionary intermediates from the inferred ancestral network to the extant one, and find that, at the resolution of our assay, there exist stepwise mutational paths from the single protein to the divergent pair of extant proteins with no apparent fitness defects. Parallel evolution has been taken as strong evidence for natural selection, but our results suggest that even in these cases, reorganization of protein function after gene duplication may be explained by neutral processes.

]]>
<![CDATA[Development of a Competitive Cystatin C-Specific Bioassay Suitable for Repetitive Measurements]]> https://www.researchpad.co/article/5989dafdab0ee8fa60bc5623

Human cystatin C (hCC), a cysteine protease inhibitor, has been proposed as a diagnostic marker because its serum levels correlate with certain cardiovascular and kidney diseases. All current hCC assays are based on ex vivo detection. Here we describe the generation and evaluation of antibodies that allow the repetitive binding and release of hCC and hCC-fusion proteins, a prerequisite for long-term measurement, which is required for compatibility with implantable biochip devices and for the development of innovative antibody-based assays suitable for continuous in vivo and in vitro monitoring. Recombinant hCC and hCC-fusion proteins were produced in Escherichia coli and HEK293T cells and were used to generate antibodies by hybridoma technology. After screening by indirect and sandwich ELISAs, 12 monoclonal hybridoma cell lines producing hCC-specific monoclonal antibodies were identified. To determine their hCC association and dissociation properties, the antibodies were analysed by surface plasmon resonance spectroscopy, revealing three with the desired fast binding and moderate-to-fast release characteristics. The analysis of binding and dissociation in the presence of hCC and hCC-fusion proteins using fluorescence-based replacement assays showed that mAb CyDI-4 was the most suitable for further analysis. The results showed that repetitive replacement on mAb CyDI-4 was possible and that most of the change in signal intensity occurred after 20–30 min. Furthermore, the suitability of mAb CyDI-4 for serum hCC measurement was confirmed by a fluorescence-based replacement assay using serially-diluted reference serum from the Institute for Reference Materials and Measurements (ERM-DA471/IFCC). Our results suggest that the assay covers the physiological and pathological ranges of hCC.

]]>
<![CDATA[A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0da7

Visualization of neurons is indispensable for the investigation of neuronal circuits in the central nervous system. Virus vectors have been widely used for labeling particular subsets of neurons, and the adeno-associated virus (AAV) vector has gained popularity as a tool for gene transfer. Here, we developed a single AAV vector Tet-Off platform, AAV-SynTetOff, to improve the gene-transduction efficiency, specifically in neurons. The platform is composed of regulator and response elements in a single AAV genome. After infection of Neuro-2a cells with the AAV-SynTetOff vector, the transduction efficiency of green fluorescent protein (GFP) was increased by approximately 2- and 15-fold relative to the conventional AAV vector with the human cytomegalovirus (CMV) or human synapsin I (SYN) promoter, respectively. We then injected the AAV vectors into the mouse neostriatum. GFP expression in the neostriatal neurons infected with the AAV-SynTetOff vector was approximately 40-times higher than that with the CMV or SYN promoter. By adding a membrane-targeting signal to GFP, the axon fibers of neostriatal neurons were clearly visualized. In contrast, by attaching somatodendritic membrane-targeting signals to GFP, axon fiber labeling was mostly suppressed. Furthermore, we prepared the AAV-SynTetOff vector, which simultaneously expressed somatodendritic membrane-targeted GFP and membrane-targeted red fluorescent protein (RFP). After injection of the vector into the neostriatum, the cell bodies and dendrites of neostriatal neurons were labeled with both GFP and RFP, whereas the axons in the projection sites were labeled only with RFP. Finally, we applied this vector to vasoactive intestinal polypeptide-positive (VIP+) neocortical neurons, one of the subclasses of inhibitory neurons in the neocortex, in layer 2/3 of the mouse primary somatosensory cortex. The results revealed the differential distribution of the somatodendritic and axonal structures at the population level. The AAV-SynTetOff vector developed in the present study exhibits strong fluorescence labeling and has promising applications in neuronal imaging.

]]>
<![CDATA[Sensitivity of Superfolder GFP to Ionic Agents]]> https://www.researchpad.co/article/5989da12ab0ee8fa60b7a1ea

Superfolder variant of the green fluorescent protein (sfGFP) became a favorite probe for examination of the unfolding–refolding processes of fluorescent proteins with beta-barrel structure owing to its reversible unfolding in comparison with other fluorescent proteins. Its benefit is the proper folding even in fusion constructions with poorly folded polypeptides. We noticed that guanidine thiocyanate affects not only the structure of protein but its chromophore directly. Therefore we studied the influence of ionic denaturants and salts including guanidine thiocyanate, guanidine hydrochloride, sodium chloride and sodium thiocyanate on spectral features of sfGFP. It was shown that moderate amounts of the studied agents do not disrupt sfGFP structure but provoke pronounced alteration of its spectral characteristics. Changes in absorption and CD spectra in visible spectral range indicate the specific binding of SCN and Cl anions in the sfGFP chromophore vicinity. The anion binding results in the redistribution of sfGFP molecules with neutral and anionic chromophores. This also hinders the proton transfer in the chromophore excited state, considerably decreasing the fluorescence intensity of sfGFP. Our results indicate that when ionic denaturants are used in the studies of fluorescent protein folding their effect on fluorophore charge state should be taken into account.

]]>