ResearchPad - guide-rna Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[CRISPR-mediated ablation of overexpressed EGFR in combination with sunitinib significantly suppresses renal cell carcinoma proliferation]]> Receptor tyrosine kinases, such as VEGFR, PDGFR and EGFR, play important roles in renal cancer. In this study, we investigated EGFR knockout as a therapeutic approach in renal cell carcinoma (RCC). We showed that a renal cell carcinoma cell line (RC21) has higher expression of EGFR as compared to other frequently used cell lines such as HEK293, A549, Hela and DLD1. Ablation of EGFR by CRISPR/Cas9 significantly restrained tumor cell growth and activated the MAPK (pERK1/2) pathway. The VEGFR and PDGFR inhibitor, sunitinib, attenuated the expression of MAPK (pERK1/2) and pAKT induced by EGFR loss and further inhibited EGFR-/- cell proliferation. We showed that loss of EGFR eventually leads to resistance to SAHA and cisplatin. Furthermore, EGFR loss induced G2/M phase arrest and resulted in an increased resistance to TNF-related apoptosis-inducing ligand (TRAIL) in renal cell carcinoma. Thus, ablation of overexpressed EGFR by CRISPR/Cas9 alone or in combination with sunitinib may be a new treatment option for renal cell carcinoma.

<![CDATA[TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in <i>Chlamydomonas reinhardtii</i>]]> Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.

<![CDATA[Mouse models of GNAO1-associated movement disorder: Allele- and sex-specific differences in phenotypes]]>


Infants and children with dominant de novo mutations in GNAO1 exhibit movement disorders, epilepsy, or both. Children with loss-of-function (LOF) mutations exhibit Epileptiform Encephalopathy 17 (EIEE17). Gain-of-function (GOF) mutations or those with normal function are found in patients with Neurodevelopmental Disorder with Involuntary Movements (NEDIM). There is no animal model with a human mutant GNAO1 allele.


Here we develop a mouse model carrying a human GNAO1 mutation (G203R) and determine whether the clinical features of patients with this GNAO1 mutation, which includes both epilepsy and movement disorder, would be evident in the mouse model.


A mouse Gnao1 knock-in GOF mutation (G203R) was created by CRISPR/Cas9 methods. The resulting offspring and littermate controls were subjected to a battery of behavioral tests. A previously reported GOF mutant mouse knock-in (Gnao1+/G184S), which has not been found in patients, was also studied for comparison.


Gnao1+/G203R mutant mice are viable and gain weight comparably to controls. Homozygotes are non-viable. Grip strength was decreased in both males and females. Male Gnao1+/G203R mice were strongly affected in movement assays (RotaRod and DigiGait) while females were not. Male Gnao1+/G203R mice also showed enhanced seizure propensity in the pentylenetetrazole kindling test. Mice with a G184S GOF knock-in also showed movement-related behavioral phenotypes but females were more strongly affected than males.


Gnao1+/G203R mice phenocopy children with heterozygous GNAO1 G203R mutations, showing both movement disorder and a relatively mild epilepsy pattern. This mouse model should be useful in mechanistic and preclinical studies of GNAO1-related movement disorders.

<![CDATA[Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi]]>

Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.

<![CDATA[RNA virus evasion of nonsense-mediated decay]]>

Nonsense-mediated decay (NMD) is a host RNA control pathway that removes aberrant transcripts with long 3’ untranslated regions (UTRs) due to premature termination codons (PTCs) that arise through mutation or defective splicing. To maximize coding potential, RNA viruses often contain internally located stop codons that should also be prime targets for NMD. Using an agroinfiltration-based NMD assay in Nicotiana benthamiana, we identified two segments conferring NMD-resistance in the carmovirus Turnip crinkle virus (TCV) genome. The ribosome readthrough structure just downstream of the TCV p28 termination codon stabilized an NMD-sensitive reporter as did a frameshifting element from umbravirus Pea enation mosaic virus. In addition, a 51-nt unstructured region (USR) at the beginning of the TCV 3’ UTR increased NMD-resistance 3-fold when inserted into an unrelated NMD-sensitive 3’ UTR. Several additional carmovirus 3’ UTRs also conferred varying levels of NMD resistance depending on the construct despite no sequence similarity in the analogous region. Instead, these regions displayed a marked lack of RNA structure immediately following the NMD-targeted stop codon. NMD-resistance was only slightly reduced by conversion of 19 pyrimidines in the USR to purines, but resistance was abolished when a 2-nt mutation was introduced downstream of the USR that substantially increased the secondary structure in the USR through formation of a stable hairpin. The same 2-nt mutation also enhanced the NMD susceptibility of a subgenomic RNA expressed independently of the genomic RNA. The conserved lack of RNA structure among most carmoviruses at the 5’ end of their 3’ UTR could serve to enhance subgenomic RNA stability, which would increase expression of the encoded capsid protein that also functions as the RNA silencing suppressor. These results demonstrate that the TCV genome has features that are inherently NMD-resistant and these strategies could be widespread among RNA viruses and NMD-resistant host mRNAs with long 3’ UTRs.

<![CDATA[Development of CRISPR/Cas9-mediated gene disruption systems in Giardia lamblia]]>

Giardia lamblia becomes dormant by differentiation into a water-resistant cyst that can infect a new host. Synthesis of three cyst wall proteins (CWPs) is the fundamental feature of this differentiation. Myeloid leukemia factor (MLF) proteins are involved in cell differentiation, and tumorigenesis in mammals, but little is known about its role in protozoan parasites. We developed a CRISPR/Cas9 system to understand the role of MLF in Giardia. Due to the tetraploid genome in two nuclei of Giardia, it could be hard to disrupt a gene completely in Giardia. We only generated knockdown but not knockout mutants. We found that knockdown of the mlf gene resulted in a significant decrease of cwp gene expression and cyst formation, suggesting a positive role of MLF in encystation. We further used mlf as a model gene to improve the system. The addition of an inhibitor for NHEJ, Scr7, or combining all cassettes for gRNA and Cas9 expression into one plasmid resulted in improved gene disruption efficiencies and a significant decrease in cwp gene expression. Our results provide insights into a positive role of MLF in inducing Giardia differentiation and a useful tool for studies in Giardia.