ResearchPad - haplotypes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method]]> https://www.researchpad.co/article/elastic_article_15721 Sclerotinia stem rot (SSR) is a devastating fungal disease that causes severe yield losses of soybean worldwide. In the present study, a representative population of 185 soybean accessions was selected and utilized to identify the quantitative trait nucleotide (QTN) of partial resistance to soybean SSR via a genome-wide association study (GWAS). A total of 22,048 single-nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) > 5% and missing data < 3% were used to assess linkage disequilibrium (LD) levels. Association signals associated with SSR partial resistance were identified by two models, including compressed mixed linear model (CMLM) and multi-locus random-SNP-effect mixed linear model (mrMLM). Finally, seven QTNs with major effects (a known locus and six novel loci) via CMLM and nine novel QTNs with minor effects via mrMLM were detected in relation to partial resistance to SSR, respectively. One of all the novel loci (Gm05:14834789 on Chr.05), which was co-located by these two methods, might be a stable one that showed high significance in SSR partial resistance. Additionally, a total of 71 major and 85 minor candidate genes located in the 200-kb genomic region of each peak SNP detected by CMLM and mrMLM were found, respectively. By using a gene-based association, a total of six SNPs from three major effects genes and eight SNPs from four minor effects genes were identified. Of them, Glyma.18G012200 has been characterized as a significant element in controlling fungal disease in plants.

]]>
<![CDATA[Genetic variation and phylogeographic structure of <i>Spodoptera exigua</i> in western China based on mitochondrial DNA and microsatellite markers]]> https://www.researchpad.co/article/elastic_article_14552 The beet armyworm, Spodoptera exigua, is a significant agricultural pest of numerous crops and has caused serious economic losses in China. To effectively control this pest, we analyzed its genetic variation, population genetic structure and demographic history. We used mitochondrial DNA (mtDNA) fragments of the cytochrome oxidase subunit I (COI) and eight nuclear microsatellite loci to investigate genetic diversity and population genetic structure of S. exigua populations at 14 sampling sites in western China. Both mtDNA and microsatellite data indicated low levels of genetic diversity among all populations. A moderate genetic differentiation among some S. exigua populations was detected. Neighbor-joining dendrograms, STRUCTURE, and principal coordinate analysis (PCoA) revealed two genetically distinct groups: the KEL group and the remaining population group. Isolation by distance (IBD) results showed a weak significant correlation between geographic distance and genetic differentiation. Haplotype networks, neutrality testing, and mismatch distribution analysis indicated that the beet armyworm experienced a recent rapid expansion without a recent genetic bottleneck in western China. Thus, the results of this population genetic study can help with the development of strategies for managing this highly migratory pest.

]]>
<![CDATA[Genetic diversity of <i>Echinococcus multilocularis</i> and <i>Echinococcus granulosus sensu lato</i> in Kyrgyzstan: The A2 haplotype of <i>E</i>. <i>multilocularis</i> is the predominant variant infecting humans]]> https://www.researchpad.co/article/elastic_article_13871 Analysis of the genetic variability in Echinococcus species from different endemic countries have contributed to the knowledge in the taxonomy and phylogeography of these parasites. The most important species of this genus, Echinococcus granulosus sensu lato and Echinococcus multilocularis, co-exist in Kyrgyzstan causing serious public health issues. E. granulosus s.l. causes cystic echinococcosis and E. multilocularis is the causative agent of alveolar echinococcosis. The most relevant finding of our study is the identification of the cob/nad2/cox1 A2 haplotype of E. multilocularis as the most commonly found in humans and dogs. However, it remains unknown if this variant of E. multilocularis, based on genetic differences in mitochondrial genes, presents differences in virulence which could have contributed to the emergence of alveolar echinococcosis in Kyrgyzstan. The results also show a number of non-previously described genetic variants of E. multilocularis and E. granulosus s.s.

]]>
<![CDATA[Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (<i>Xenospiza baileyi</i>)]]> https://www.researchpad.co/article/elastic_article_11235 The magnitude and distribution of genetic diversity through space and time can provide useful information relating to evolutionary potential and conservation status in threatened species. In assessing genetic diversity in species that are of conservation concern, several studies have focused on the use of Toll-like receptors (TLRs). TLRs are innate immune genes related to pathogen resistance, and polymorphisms may reflect not only levels of functional diversity, but may also be used to assess genetic diversity within and among populations. Here, we combined four potentially adaptive markers (TLRs) with one mitochondrial (COI) marker to evaluate genetic variation in the endangered Sierra Madre Sparrow (Xenospiza baileyi). This species offers an ideal model to investigate population and evolutionary genetic processes that may be occurring in a habitat restricted endangered species with disjunct populations (Mexico City and Durango), the census sizes of which differ by an order of magnitude. TLRs diversity in the Sierra Madre Sparrow was relatively high, which was not expected given its two small, geographically isolated populations. Genetic diversity was different (but not significantly so) between the two populations, with less diversity seen in the smaller Durango population. Population genetic structure between populations was due to isolation and different selective forces acting on different TLRs; population structure was also evident in COI. Reduction of genetic diversity in COI was observed over 20 years in the Durango population, a result likely caused by habitat loss, a factor which may be the main cause of diversity decline generally. Our results provide information related to the ways in which adaptive variation can be altered by demographic changes due to human-mediated habitat alterations. Furthermore, our findings may help to guide conservation schemes for both populations and their restricted habitat.

]]>
<![CDATA[Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti]]> https://www.researchpad.co/article/N8479e8f6-b6ad-4aa7-91b1-bf6bde90184a

Background

Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood.

Methodology/Principal findings

We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background.

Conclusions/Significance

Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.

]]>
<![CDATA[Identification of NUDT15 gene variants in Amazonian Amerindians and admixed individuals from northern Brazil]]> https://www.researchpad.co/article/N0a09703b-e69a-40d3-8ae4-dfe23e56b45d

Introduction

The nudix hydrolase 15 (NUDT15) gene acts in the metabolism of thiopurine, by catabolizing its active metabolite thioguanosine triphosphate into its inactivated form, thioguanosine monophosphate. The frequency of alternative NUDT15 alleles, in particular those that cause a drastic loss of gene function, varies widely among geographically distinct populations. In the general population of northern Brazilian, high toxicity rates (65%) have been recorded in patients treated with the standard protocol for acute lymphoblastic leukemia, which involves thiopurine-based drugs. The present study characterized the molecular profile of the coding region of the NUDT15 gene in two groups, non-admixed Amerindians and admixed individuals from the Amazon region of northern Brazil.

Methods

The entire NUDT15 gene was sequenced in 64 Amerindians from 12 Amazonian groups and 82 admixed individuals from northern Brazil. The DNA was extracted using phenol-chloroform. The exome libraries were prepared using the Nextera Rapid Capture Exome (Illumina) and SureSelect Human All Exon V6 (Agilent) kits. The allelic variants were annotated in the ViVa® (Viewer of Variants) software.

Results

Four NUDT15 variants were identified: rs374594155, rs1272632214, rs147390019, andrs116855232. The variants rs1272632214 and rs116855232 were in complete linkage disequilibrium, and were assigned to the NUDT15*2 genotype. These variants had high frequencies in both our study populations in comparison with other populations catalogued in the 1000 Genomes database. We also identified the NUDT15*4 haplotype in our study populations, at frequencies similar to those reported in other populations from around the world.

Conclusion

Our findings indicate that Amerindian and admixed populations from northern Brazil have high frequencies of the NUDT15 haplotypes that alter the metabolism profile of thiopurines.

]]>
<![CDATA[A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene]]> https://www.researchpad.co/article/N8aa5bdf2-6390-43c2-aef2-b7a76659179a

We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.

]]>
<![CDATA[Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4]]> https://www.researchpad.co/article/5c89773ed5eed0c4847d27e7

Traits related to plant lodging and architecture are important determinants of plant productivity in intensive maize cultivation systems. Motivated by the identification of genomic associations with the leaf angle, plant height (PH), ear height (EH) and the EH/PH ratio, we characterized approximately 7,800 haplotypes from a set of high-quality single nucleotide polymorphisms (SNPs), in an association panel consisting of tropical maize inbred lines. The proportion of the phenotypic variations explained by the individual SNPs varied between 7%, for the SNP S1_285330124 (located on chromosome 9 and associated with the EH/PH ratio), and 22%, for the SNP S1_317085830 (located on chromosome 6 and associated with the leaf angle). A total of 40 haplotype blocks were significantly associated with the traits of interest, explaining up to 29% of the phenotypic variation for the leaf angle, corresponding to the haplotype hapLA4.04, which was stable over two growing seasons. Overall, the associations for PH, EH and the EH/PH ratio were environment-specific, which was confirmed by performing a model comparison analysis using the information criteria of Akaike and Schwarz. In addition, five stable haplotypes (83%) and 15 SNPs (75%) were identified for the leaf angle. Finally, approximately 62% of the associated haplotypes (25/40) did not contain SNPs detected in the association study using individual SNP markers. This result confirms the advantage of haplotype-based genome-wide association studies for examining genomic regions that control the determining traits for architecture and lodging in maize plants.

]]>
<![CDATA[Biogeography of the endosymbiotic dinoflagellates (Symbiodiniaceae) community associated with the brooding coral Favia gravida in the Atlantic Ocean]]> https://www.researchpad.co/article/5c8c1937d5eed0c484b4d1a6

Zooxanthellate corals live in symbiosis with phototrophic dinoflagellates of the family Symbiodiniaceae, enabling the host coral to dwell in shallow, nutrient-poor marine waters. The South Atlantic Ocean is characterized by low coral diversity with high levels of endemism. However, little is known about coral–dinoflagellate associations in the region. This study examined the diversity of Symbiodiniaceae associated with the scleractinian coral Favia gravida across its distributional range using the ITS-2 marker. This brooding coral endemic to the South Atlantic can be found across a wide range of latitudes and longitudes, including the Mid-Atlantic islands. Even though it occurs primarily in shallower environments, F. gravida is among the few coral species that live in habitats with extreme environmental conditions (high irradiance, temperature, and turbidity) such as very shallow tide pools. In the present study, we show that F. gravida exhibits some degree of flexibility in its symbiotic association with zooxanthellae across its range. F. gravida associates predominantly with Cladocopium C3 (ITS2 type Symbiodinium C3) but also with Symbiodinium A3, Symbiodinium linucheae (ITS2 type A4), Cladocopium C1, Cladocopium C130, and Fugacium F3. Symbiont diversity varied across biogeographic regions (Symbiodinium A3 and S. linucheae were found in the Tropical Eastern Atlantic, Cladocopium C1 in the Mid-Atlantic, and other subtypes in the Southwestern Atlantic) and was affected by local environmental conditions. In addition, Symbiodiniaceae diversity was highest in a southwestern Atlantic oceanic island (Rocas Atoll). Understanding the relationship between corals and their algal symbionts is critical in determining the factors that control the ecological niches of zooxanthellate corals and their symbionts, and identifying host-symbiont pairs that may be more resistant to environmental changes.

]]>
<![CDATA[HCV transmission in high-risk communities in Bulgaria]]> https://www.researchpad.co/article/5c882406d5eed0c4846395b0

Background

The rate of HIV infection in Bulgaria is low. However, the rate of HCV-HIV-coinfection and HCV infection is high, especially among high-risk communities. The molecular epidemiology of those infections has not been studied before.

Methods

Consensus Sanger sequences of HVR1 and NS5B from 125 cases of HIV/HCV coinfections, collected during 2010–2014 in 15 different Bulgarian cities, were used for preliminary phylogenetic evaluation. Next-generation sequencing (NGS) data of the hypervariable region 1 (HVR1) analyzed via the Global Hepatitis Outbreak and Surveillance Technology (GHOST) were used to evaluate genetic heterogeneity and possible transmission linkages. Links between pairs that were below and above the established genetic distance threshold, indicative of transmission, were further examined by generating k-step networks.

Results

Preliminary genetic analyses showed predominance of HCV genotype 1a (54%), followed by 1b (20.8%), 2a (1.4%), 3a (22.3%) and 4a (1.4%), indicating ongoing transmission of many HCV strains of different genotypes. NGS of HVR1 from 72 cases showed significant genetic heterogeneity of intra-host HCV populations, with 5 cases being infected with 2 different genotypes or subtypes and 6 cases being infected with 2 strains of same subtype. GHOST revealed 8 transmission clusters involving 30 cases (41.7%), indicating a high rate of transmission.

Four transmission clusters were found in Sofia, three in Plovdiv, and one in Peshtera. The main risk factor for the clusters was injection drug use. Close genetic proximity among HCV strains from the 3 Sofia clusters, and between HCV strains from Peshtera and one of the two Plovdiv clusters confirms a long and extensive transmission history of these strains in Bulgaria.

Conclusions

Identification of several HCV genotypes and many HCV strains suggests a frequent introduction of HCV to the studied high-risk communities. GHOST detected a broad transmission network, which sustains circulation of several HCV strains since their early introduction in the 3 cities. This is the first report on the molecular epidemiology of HIV/HCV coinfections in Bulgaria.

]]>
<![CDATA[A polyploid admixed origin of beer yeasts derived from European and Asian wine populations]]> https://www.researchpad.co/article/5c88240dd5eed0c48463962a

Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.

]]>
<![CDATA[Origins and geographic diversification of African rice (Oryza glaberrima)]]> https://www.researchpad.co/article/5c897765d5eed0c4847d2be9

Rice is a staple food for the majority of the world’s population. Whereas Asian rice (Oryza sativa) has been extensively studied, the exact origins of African rice (Oryza glaberrima) are still contested. Previous studies have supported either a centric or a non-centric geographic origin of African rice domestication. Here we review the evidence for both scenarios through a critical reassessment of 206 whole genome sequences of domesticated and wild African rice. While genetic diversity analyses support a severe bottleneck caused by domestication, signatures of recent and strong positive selection do not unequivocally point to candidate domestication genes, suggesting that domestication proceeded differently than in Asian rice–either by selection on different alleles, or different modes of selection. Population structure analysis revealed five genetic clusters localising to different geographic regions. Isolation by distance was identified in the coastal populations, which could account for parallel adaptation in geographically separated demes. Although genome-wide phylogenetic relationships support an origin in the eastern cultivation range followed by diversification along the Atlantic coast, further analysis of domestication genes shows distinct haplotypes in the southwest—suggesting that at least one of several key domestication traits might have originated there. These findings shed new light on an old controversy concerning plant domestication in Africa by highlighting the divergent roots of African rice cultivation, including a separate centre of domestication activity in the Guinea Highlands. We thus suggest that the commonly accepted centric origin of African rice must be reconsidered in favour of a non-centric or polycentric view.

]]>
<![CDATA[Rectifying long-standing misconceptions about the ρ statistic for molecular dating]]> https://www.researchpad.co/article/5c75ac76d5eed0c484d08825

When divided by a given mutation rate, the ρ (rho) statistic provides a simple estimator of the age of a clade within a phylogenetic tree by averaging the number of mutations from each sample in the clade to its root. However, a long-standing critique of the use of ρ in genetic dating has been quite often cited. Here we show that the critique is unfounded. We demonstrate by a formal mathematical argument and illustrate with a simulation study that ρ estimates are unbiased and also that ρ and maximum likelihood estimates do not differ in any systematic fashion. We also demonstrate that the claim that the associated confidence intervals commonly estimate the uncertainty inappropriately is flawed since it relies on a means of calculating standard errors that is not used by any other researchers, whereas an established expression for the standard error is largely unproblematic. We conclude that ρ dating, alongside approaches such as maximum likelihood (ML) and Bayesian inference, remains a useful tool for genetic dating.

]]>
<![CDATA[Genetic redundancy fuels polygenic adaptation in Drosophila]]> https://www.researchpad.co/article/5c61e8f6d5eed0c48496f4fd

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic—i.e., result from selection on a large number of genetic loci—but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes—e.g., fitness, metabolic rate, and fat content—and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.

]]>
<![CDATA[Genetic variation and phylogeography of the Triatoma dimidiata complex evidence a potential center of origin and recent divergence of haplogroups having differential Trypanosoma cruzi and DTU infections]]> https://www.researchpad.co/article/5c58d62ed5eed0c48403184e

The population genetics of Triatoma dimidiata haplogroups was analyzed at landscape and sub-regional scales in Chiapas and regional level across the Mexican Neotropics, and phylogeography of the complex was re-analyzed across its complete geographic range. Two contiguous fragments of the ND4 gene were analyzed due to bias from differential haplogroup specificity using a previously designed sequence. At both landscape (anthropic modification gradient) and regional (demographic, fragmentation, biogeographic, climate) scales, lowest T. dimidiata genetic diversity occurs where there is greatest historical anthropic modification, and where T. cruzi infection prevalence is significantly highest. Trypanosoma cruzi prevalence was significantly higher than expected in haplogroups 1 and 3, while lower than expected in haplogroup 2. There was also a significant difference of DTUI and DTUVI infection frequencies in both haplogroups 1 and 3, while no difference of either in haplogroup 2. All haplogroups from the Mexican Neotropics had moderate to high haplotype diversity, while greatest genetic differentiation was between haplogroups 1 and 3 (above FST = 0.868, p < 0.0001). Divergence of the complex from the MRCA was estimated between 0.97 MYA (95% HPD interval = 0.55–1.53 MYA) and 0.85 MYA (95% HPD interval = 0.42–1.5 MYA) for ND4A and both concatenated fragments, respectively, with primary divergence from the MRCA of haplogroups 2 and 3. Effective population size for Mexican haplogroups 1 and 2 increased between 0.02 and 0.03 MYA. This study supports previous ecological niche evidence for the complex´s origin surrounding the Tehuantepec Isthmus, and provides evidence for recent divergence of three primary dimidiata haplogroups, with differential T. cruzi infection frequency and DTU specificity, important components of vector capacity.

]]>
<![CDATA[Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences]]> https://www.researchpad.co/article/5c5b52d7d5eed0c4842bd113

Cystoseira is a common brown algal genus widely distributed throughout the Atlantic and Mediterranean regions whose taxonomical assignment of specimens is often hampered by intra- and interspecific morphological variability. In this study, three mitochondrial regions, namely cytochrome oxidase subunit 1 (COI), 23S rDNA (23S), and 23S-tRNAVal intergenic spacer (mt-spacer) were used to analyse the phylogenetic relationships of 22 Cystoseira taxa (n = 93 samples). A total of 135 sequences (48 from COI, 43 from 23S and 44 from mt-spacer) were newly generated and analysed together with Cystoseira sequences (9 COI, 31 23S and 35 mt-spacer) from other authors. Phylogenetic analysis of these three markers identified 3 well-resolved clades and also corroborated the polyphyletic nature of the genus. The resolution of Cystoseira taxa within the three clades improves significantly when the inclusion of specimens of related genera was minimized. COI and mt-spacer markers resolved the phylogeny of some of the Cystoseira taxa, such as the C. baccata, C. foeniculacea and C. usneoides. Furthermore, trends between phylogeny, embryonic development and available chemotaxonomic classifications were identified, showing that phylogenetic, chemical and morphological data should be taken into account to study the evolutionary relationships among the algae currently classified as Cystoseira. The resolution of Cystoseira macroalgae into three well supported clades achieved here is relevant for a more accurate isolation and identification of natural compounds and the implementation of conservation measures for target species.

]]>
<![CDATA[Admixture mapping reveals evidence of differential multiple sclerosis risk by genetic ancestry]]> https://www.researchpad.co/article/5c4a3058d5eed0c4844bfdb6

Multiple sclerosis (MS) is an autoimmune disease with high prevalence among populations of northern European ancestry. Past studies have shown that exposure to ultraviolet radiation could explain the difference in MS prevalence across the globe. In this study, we investigate whether the difference in MS prevalence could be explained by European genetic risk factors. We characterized the ancestry of MS-associated alleles using RFMix, a conditional random field parameterized by random forests, to estimate their local ancestry in the largest assembled admixed population to date, with 3,692 African Americans, 4,915 Asian Americans, and 3,777 Hispanics. The majority of MS-associated human leukocyte antigen (HLA) alleles, including the prominent HLA-DRB1*15:01 risk allele, exhibited cosmopolitan ancestry. Ancestry-specific MS-associated HLA alleles were also identified. Analysis of the HLA-DRB1*15:01 risk allele in African Americans revealed that alleles on the European haplotype conferred three times the disease risk compared to those on the African haplotype. Furthermore, we found evidence that the European and African HLA-DRB1*15:01 alleles exhibit single nucleotide polymorphism (SNP) differences in regions encoding the HLA-DRB1 antigen-binding heterodimer. Additional evidence for increased risk of MS conferred by the European haplotype were found for HLA-B*07:02 and HLA-A*03:01 in African Americans. Most of the 200 non-HLA MS SNPs previously established in European populations were not significantly associated with MS in admixed populations, nor were they ancestrally more European in cases compared to controls. Lastly, a genome-wide search of association between European ancestry and MS revealed a region of interest close to the ZNF596 gene on chromosome 8 in Hispanics; cases had a significantly higher proportion of European ancestry compared to controls. In conclusion, our study established that the genetic ancestry of MS-associated alleles is complex and implicated that difference in MS prevalence could be explained by the ancestry of MS-associated alleles.

]]>
<![CDATA[Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia]]> https://www.researchpad.co/article/5c61e8c8d5eed0c48496f180

Wheat landraces, wild relatives and other ‘exotic’ accessions are important sources of new favorable alleles. The use of those exotic alleles is facilitated by having access to information on the association of specific genomic regions with desirable traits. Here, we conducted a genome-wide association study (GWAS) using a wheat panel that includes landraces, synthetic hexaploids and other exotic wheat accessions to identify loci that contribute to increases in grain yield in southern Australia. The 568 accessions were grown in the field during the 2014 and 2015 seasons and measured for plant height, maturity, spike length, spike number, grain yield, plant biomass, HI and TGW. We used the 90K SNP array and two GWAS approaches (GAPIT and QTCAT) to identify loci associated with the different traits. We identified 17 loci with GAPIT and 25 with QTCAT. Ten of these loci were associated with known genes that are routinely employed in marker assisted selection such as Ppd-D1 for maturity and Rht-D1 for plant height and seven of those were detected with both methods. We identified one locus for yield per se in 2014 on chromosome 6B with QTCAT and three in 2015, on chromosomes 4B and 5A with GAPIT and 6B with QTCAT. The 6B loci corresponded to the same region in both years. The favorable haplotypes for yield at the 5A and 6B loci are widespread in Australian accessions with 112 out of 153 carrying the favorable haplotype at the 5A locus and 136 out of 146 carrying the favorable haplotype at the 6A locus, while the favorable haplotype at 4B is only present in 65 out of 149 Australian accessions. The low number of yield QTL in our study corroborate with other GWAS for yield in wheat, where most of the identified loci have very small effects.

]]>
<![CDATA[Regional variability in reproductive traits of the Acropora hyacinthus species complex in the Western Pacific Region]]> https://www.researchpad.co/article/5c59fea9d5eed0c4841352b0

Understanding natural variations in the life history traits of reef-building corals under different environmental conditions is an area of active research. This study compares variability in the reproductive and genetic traits of the hermaphroditic broadcast spawning coral Acropora hyacinthus, from the Western Pacific Region, across six different latitudes [Japan (33° and 31°N), Taiwan (23°, 22° and 21°N), and Indonesia (5°S)]. Egg sizes among corals in the lowest latitude studied were significantly larger than those at high latitudes, while the mean number of eggs were significantly different only among high latitude and two out of the three mid latitude locations studied. Egg numbers were significantly negatively correlated with egg and testis volumes, indicating reproductive trade-offs across locations. Female gonad volumes were smaller at high latitudes but significantly larger at lower latitudes, being positively correlated with seawater temperatures. Furthermore, high genetic similarities among populations suggest active gene flow among low-, mid- and high-latitude locations. An exception to this trend, the mid-latitude location of Penghu (off western Taiwan) formed an independent group with highly similar genetic and reproductive traits, suggesting reproductive isolation with local adaptations. This study reports natural spatial variations in the reproductive traits of A. hyacinthus at different latitudinal locations, which may serve as baseline information to predict how the life histories of corals in general respond to the impacts of climate change.

]]>
<![CDATA[A genome-wide scan for diversifying selection signatures in selected horse breeds]]> https://www.researchpad.co/article/5c5b5289d5eed0c4842bcb02

The genetic differentiation of the current horse population was evolutionarily created by natural or artificial selection which shaped the genomes of individual breeds in several unique ways. The availability of high throughput genotyping methods created the opportunity to study this genetic variation on a genome-wide level allowing detection of genome regions divergently selected between separate breeds as well as among different horse types sharing similar phenotypic features. In this study, we used the population differentiation index (FST) that is generally used for measuring locus-specific allele frequencies variation between populations, to detect selection signatures among six horse breeds maintained in Poland. These breeds can be classified into three major categories, including light, draft and primitive horses, selected mainly in terms of type (utility), exterior, performance, size, coat color and appearance. The analysis of the most pronounced selection signals found in this study allowed us to detect several genomic regions and genes connected with processes potentially important for breed phenotypic differentiation and associated with energy homeostasis during physical effort, heart functioning, fertility, disease resistance and motor coordination. Our results also confirmed previously described association of loci on ECA3 (spanning LCORL and NCAPG genes) and ECA11 (spanning LASP1 gene) with the regulation of body size in our draft and primitive (small size) horses. The efficiency of the applied FST-based approach was also confirmed by the identification of a robust selection signal in the blue dun colored Polish Konik horses at the locus of TBX3 gene, which was previously shown to be responsible for dun coat color dilution in other horse breeds. FST-based method showed to be efficient in detection of diversifying selection signatures in the analyzed horse breeds. Especially pronounced signals were observed at the loci responsible for fixed breed-specific features. Several candidate genes under selection were proposed in this study for traits selected in separate breeds and horse types, however, further functional and comparative studies are needed to confirm and explain their effect on the observed genetic diversity of the horse breeds.

]]>