ResearchPad - helminths https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities]]> https://www.researchpad.co/article/elastic_article_14550 Parasitic helminths have coevolved with humans over millennia, intricately refining and developing an array of mechanisms to suppress or skew the host’s immune system, thereby promoting their long-term survival. Some helminths, such as hookworms, cause little to no overt pathology when present in modest numbers and may even confer benefits to their human host. To exploit this evolutionary phenomenon, clinical trials of human helminth infection have been established and assessed for safety and efficacy for a range of immune dysfunction diseases and have yielded mixed outcomes. Studies of live helminth therapy in mice and larger animals have convincingly shown that helminths and their excretory/secretory products possess anti-inflammatory drug-like properties and represent an untapped pharmacopeia. These anti-inflammatory moieties include extracellular vesicles, proteins, glycans, post-translational modifications, and various metabolites. Although the concept of helminth-inspired therapies holds promise, it also presents a challenge to the drug development community, which is generally unfamiliar with foreign biologics that do not behave like antibodies. Identification and characterization of helminth molecules and vesicles and the molecular pathways they target in the host present a unique opportunity to develop tailored drugs inspired by nature that are efficacious, safe, and have minimal immunogenicity. Even so, much work remains to mine and assess this out-of-the-box therapeutic modality. Industry-based organizations need to consider long-haul investments aimed at unraveling and exploiting unique and differentiated mechanisms of action as opposed to toe-dipping entries with an eye on rapid and profitable turnarounds.

]]>
<![CDATA[Democratizing water monitoring: Implementation of a community-based qPCR monitoring program for recreational water hazards]]> https://www.researchpad.co/article/elastic_article_14486 Recreational water monitoring can be challenging due to the highly variable nature of pathogens and indicator concentrations, the myriad of potential biological hazards to measure for, and numerous access points, both official and unofficial, that are used for recreation. The aim of this study was to develop, deploy, and assess the effectiveness of a quantitative polymerase chain reaction (qPCR) community-based monitoring (CBM) program for the assessment of bacterial and parasitic hazards in recreational water. This study developed methodologies for performing qPCR ‘in the field,’ then engaged with water management and monitoring groups and tested the method in a real-world implementation study to evaluate the accuracy of CBM using qPCR both quantitatively and qualitatively. This study found high reproducibility between qPCR results performed by non-expert field users and expert laboratory results, suggesting that qPCR as a methodology could be amenable to a CBM program.

]]>
<![CDATA[Genetic diversity of <i>Echinococcus multilocularis</i> and <i>Echinococcus granulosus sensu lato</i> in Kyrgyzstan: The A2 haplotype of <i>E</i>. <i>multilocularis</i> is the predominant variant infecting humans]]> https://www.researchpad.co/article/elastic_article_13871 Analysis of the genetic variability in Echinococcus species from different endemic countries have contributed to the knowledge in the taxonomy and phylogeography of these parasites. The most important species of this genus, Echinococcus granulosus sensu lato and Echinococcus multilocularis, co-exist in Kyrgyzstan causing serious public health issues. E. granulosus s.l. causes cystic echinococcosis and E. multilocularis is the causative agent of alveolar echinococcosis. The most relevant finding of our study is the identification of the cob/nad2/cox1 A2 haplotype of E. multilocularis as the most commonly found in humans and dogs. However, it remains unknown if this variant of E. multilocularis, based on genetic differences in mitochondrial genes, presents differences in virulence which could have contributed to the emergence of alveolar echinococcosis in Kyrgyzstan. The results also show a number of non-previously described genetic variants of E. multilocularis and E. granulosus s.s.

]]>
<![CDATA[Amino acids serve as an important energy source for adult flukes of <i>Clonorchis sinensis</i>]]> https://www.researchpad.co/article/elastic_article_13829 Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.

]]>
<![CDATA[Ivermectin as an adjuvant to anti-epileptic treatment in persons with onchocerciasis-associated epilepsy: A randomized proof-of-concept clinical trial]]> https://www.researchpad.co/article/N2a703e18-6320-408f-bd4d-1f677396d877

Introduction

Recent findings from onchocerciasis-endemic foci uphold that increasing ivermectin coverage reduces the epilepsy incidence, and anecdotal evidence suggests seizure frequency reduction in persons with onchocerciasis-associated epilepsy, when treated with ivermectin. We conducted a randomized clinical trial to assess whether ivermectin treatment decreases seizure frequency.

Methods

A proof-of-concept randomized clinical trial was conducted in the Logo health zone in the Ituri province, Democratic Republic of Congo, to compare seizure frequencies in onchocerciasis-infected persons with epilepsy (PWE) randomized to one of two treatment arms: the anti-epileptic drug phenobarbital supplemented with ivermectin, versus phenobarbital alone. The primary endpoint was defined as the probability of being seizure-free at month 4. A secondary endpoint was defined as >50% reduction in seizure frequency at month 4, compared to baseline. Both endpoints were analyzed using multiple logistic regression. In longitudinal analysis, the probability of seizure freedom during the follow-up period was assessed for both treatment arms by fitting a logistic regression model using generalized estimating equations (GEE).

Results

Ninety PWE enrolled between October and November 2017 were eligible for analysis. A multiple logistic regression analysis showed a borderline association between ivermectin treatment and being seizure-free at month 4 (OR: 1.652, 95% CI 0.975–2.799; p = 0.062). There was no significant difference in the probability of experiencing >50% reduction of the seizure frequency at month 4 between the two treatment arms. Also, treatment with ivermectin did not significantly increase the odds of being seizure-free during the individual follow-up visits.

Conclusion

Whether ivermectin has an added value in reducing the frequency of seizures in PWE treated with AED remains to be determined. A larger study in persons with OAE on a stable AED regimen and in persons with recent epilepsy onset should be considered to further investigate the potential beneficial effect of ivermectin treatment in persons with OAE.

Trial registration

Registration: www.clinicaltrials.gov; NCT03052998.

]]>
<![CDATA[Crystal structures of Triosephosphate Isomerases from Taenia solium and Schistosoma mansoni provide insights for vaccine rationale and drug design against helminth parasites]]> https://www.researchpad.co/article/N340e3046-cb91-4c84-8d1b-fb2a65cf4cdb

Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and Schistosoma mansoni (SmTPI) are potential vaccine and drug targets against cysticercosis and schistosomiasis, respectively. This is due to the dependence of parasitic helminths on glycolysis and because those proteins elicit an immune response, presumably due to their surface localization. Here we report the crystal structures of TsTPI and SmTPI in complex with 2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (β-α)8 barrel in which the dimer interface consists of α-helices 2, 3, and 4, and swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and SmTPI, respectively). This insert is located between α5 and β6 and is proposed to be the main TPI epitope. This region is part of a solvent-exposed 310–helix that folds into a hook-like structure. The crystal structures of TsTPI and SmTPI predicted conformational epitopes that could be used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E inserts are not the ones with the greatest immunological potential. SmTPI, but not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations in this residue decrease catalysis. The latter suggests that thiol-conjugating agents could be used to target SmTPI. In sum, the crystal structures of SmTPI and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug and vaccine development.

]]>
<![CDATA[Resolving "worm wars": An extended comparison review of findings from key economics and epidemiological studies]]> https://www.researchpad.co/article/5c8acc2bd5eed0c48498f08c ]]> <![CDATA[Comparing the performance of urine and copro-antigen detection in evaluating Opisthorchis viverrini infection in communities with different transmission levels in Northeast Thailand]]> https://www.researchpad.co/article/5c6730b3d5eed0c484f37f31

To combat and eventually eliminate the transmission of the liver fluke Opisthorchis viverrini, an accurate and practical diagnostic test is required. A recently established urine antigen detection test using monoclonal antibody-based enzyme-linked-immunosorbent assay (mAb-ELISA) has shown promise due to its high diagnostic accuracy and the use of urine in place of fecal samples. To further test the utility of this urine assay, we performed a cross sectional study of 1,043 people in 3 opisthorchiasis endemic communities in northeast Thailand by applying urine antigen detection together with copro-antigen detection methods. The quantitative formalin-ethyl acetate concentration technique (FECT) was concurrently performed as a reference method. The prevalence of O. viverrini determined by urine antigen detection correlated well with that by copro-antigen detection and both methods showed 10–15% higher prevalence than FECT. Within the fecal negative cases by FECT, 29% and 43% were positive by urine and copro-antigen detection, respectively. The prevalence and intensity profiles determined by antigen detection and FECT showed similar patterns of increasing trends of infection with age. The concentration of antigen measured in urine showed a positive relationship with the concentration of copro-antigen, both of which were positively correlated with fecal egg counts. The data observed in this study indicate that urine antigen detection had high diagnostic accuracy and was in concordance with copro-antigen detection. Due to the ease and noninvasiveness of sample collection, the urine assay has high potential for clinical diagnosis as well as population screening in the program for the control and elimination of opisthorchiasis.

]]>
<![CDATA[A novel cell-free method to culture Schistosoma mansoni from cercariae to juvenile worm stages for in vitro drug testing]]> https://www.researchpad.co/article/5c58d63ed5eed0c484031973

Background

The arsenal in anthelminthic treatment against schistosomiasis is limited and relies almost exclusively on a single drug, praziquantel (PZQ). Thus, resistance to PZQ could constitute a major threat. Even though PZQ is potent in killing adult worms, its activity against earlier stages is limited. Current in vitro drug screening strategies depend on newly transformed schistosomula (NTS) for initial hit identification, thereby limiting sensitivity to new compounds predominantly active in later developmental stages. Therefore, the aim of this study was to establish a highly standardized, straightforward and reliable culture method to generate and maintain advanced larval stages in vitro. We present here how this method can be a valuable tool to test drug efficacy at each intermediate larval stage, reducing the reliance on animal use (3Rs).

Methodology/Principal findings

Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and successfully cultured for up to four weeks with no loss in viability in a commercially available medium. Under these serum- and cell-free conditions, development halted at the lung-stage (LuS). However, the addition of human serum (HSe) propelled further development into liver stage (LiS) worms within eight weeks. Skin and lung stages, as well as LiS, were submitted to 96-well drug screening assays using known anti-schistosomal compounds such as PZQ, oxamniquine (OXM), mefloquine (MFQ) and artemether (ART). Our findings showed stage-dependent differences in larval susceptibility to these compounds.

Conclusion

With this robust and highly standardized in vitro assay, important developmental stages of S. mansoni up to LiS worms can be generated and maintained over prolonged periods of time. The phenotype of LiS worms, when exposed to reference drugs, was comparable to most previously published works for ex vivo harvested adult worms. Therefore, this in vitro assay can help reduce reliance on animal experiments in search for new anti-schistosomal drugs.

]]>
<![CDATA[Population genetic structure and geographical variation in Neotricula aperta (Gastropoda: Pomatiopsidae), the snail intermediate host of Schistosoma mekongi (Digenea: Schistosomatidae)]]> https://www.researchpad.co/article/5c58d632d5eed0c48403188e

Background

Neotricula aperta is the snail-intermediate host of the parasitic blood-fluke Schistosoma mekongi which causes Mekong schistosomiasis in Cambodia and the Lao PDR. Despite numerous phylogenetic studies only one DNA-sequence based population-genetic study of N. aperta had been published, and the origin, structure and persistence of N. aperta were poorly understood. Consequently, a phylogenetic and population genetic study was performed, with addition of new data to pre-existing DNA-sequences for N. aperta from remote and inaccessible habitats, including one new taxon from Laos and 505 bp of additional DNA-sequence for all sampled taxa,.

Principal findings

Spatial Principal Component Analysis revealed the presence of significant spatial-genetic clustering. Genetic-distance-based clustering indicated four populations with near perfect match to a priori defined ecogeographical regions. Spring-dwelling taxa were found to form an ecological isolate relative to other N. aperta. The poor dispersal capabilities suggested by spatial-genetic analyses were confirmed by Bayesian inference of migration rates. Population divergence time estimation implied a mid-Miocene colonisation of the present range, with immediate and rapid radiation in each ecogeographical region. Estimated effective population sizes were large (120–310 thousand).

Conclusions

The strong spatial-genetic structure confirmed the poor dispersal capabilities of N. aperta—suggesting human-mediated reintroduction of disease to controlled areas as the primary reason for control failure. The isolation of the spring-dwelling taxa and ecogeographical structure suggests adaptation of sub-populations to different habitats; the epidemiological significance of this needs investigation. The large effective population sizes indicate that the high population densities observed in surveyed habitats are also present in inaccessible areas; affording great potential for recrudescence driven by animal-reservoir transmission in remote streams. Mid-Miocene colonisation implies heterochronous evolution of these snails and associated schistosomes and suggests against coevolution of snail and parasite. Heterochronicity favours ecological factors as shapers of host-parasite specificity and greater potential for escape from schistosomiasis control through host-switching.

]]>
<![CDATA[A Biomphalaria glabrata peptide that stimulates significant behaviour modifications in aquatic free-living Schistosoma mansoni miracidia]]> https://www.researchpad.co/article/5c50c464d5eed0c4845e86d4

The human disease schistosomiasis (or bilharzia) is caused by the helminth blood fluke parasite Schistosoma mansoni, which requires an intermediate host, the freshwater gastropod snail Biomphalaria glabrata (the most common intermediate host). The free-swimming parasite miracidia utilise an excellent chemosensory sense to detect and locate an appropriate host. This study investigated the biomolecules released by the snail that stimulate changes in the behaviour of the aquatic S. mansoni miracidia. To achieve this, we have performed an integrated analysis of the snail-conditioned water, through chromatography and bioassay-guided behaviour observations, followed by mass spectrometry. A single fraction containing multiple putative peptides could stimulate extreme swimming behaviour modifications (e.g. velocity, angular variation) similar to those observed in response to crude snail mucus. One peptide (P12;—R-DITSGLDPEVADD-KR—) could replicate the stimulation of miracidia behaviour changes. P12 is derived from a larger precursor protein with a signal peptide and multiple dibasic cleavage sites, which is synthesised in various tissues of the snail, including the central nervous system and foot. P12 consists of an alpha helix secondary structure as indicated by circular dichroism spectroscopy. This information will be helpful for the development of approaches to manipulate this parasites life cycle, and opens up new avenues for exploring other parasitic diseases which have an aquatic phase using methods detailed in this investigation.

]]>
<![CDATA[Integrated seroprevalence-based assessment of Wuchereria bancrofti and Onchocerca volvulus in two lymphatic filariasis evaluation units of Mali with the SD Bioline Onchocerciasis/LF IgG4 Rapid Test]]> https://www.researchpad.co/article/5c5b52c4d5eed0c4842bcfb9

Background

Mali has become increasingly interested in the evaluation of transmission of both Wuchereria bancrofti and Onchocerca volvulus as prevalences of both infections move toward their respective elimination targets. The SD Bioline Onchocerciasis/LF IgG4 Rapid Test was used in 2 evaluation units (EU) to assess its performance as an integrated surveillance tool for elimination of lymphatic filariasis (LF) and onchocerciasis.

Methodology/Principal findings

A cross sectional survey with SD Bioline Onchocerciasis/LF IgG4 Rapid Test was piggy-backed onto a transmission assessment survey (TAS) (using the immunochromatographic card test (ICT) Binax Filariasis Now test for filarial adult circulating antigen (CFA) detection) for LF in Mali among 6–7 year old children in 2016 as part of the TAS in two EUs namely Kadiolo-Kolondieba in the region of Sikasso and Bafoulabe -Kita-Oussoubidiagna-Yelimane in the region of Kayes.

In the EU of Kadiolo- Kolondieba, of the 1,625 children tested, the overall prevalence of W. bancrofti CFA was 0.62% (10/1,625) [CI = 0.31–1.09]; while that of IgG4 to Wb123 was 0.19% (3/1,600) [CI = 0.04–0.50]. The number of positives tested with the two tests were statistically comparable (p = 0.09). In the EU of Bafoulabe-Kita-Oussoubidiagna-Yelimane, an overall prevalence of W. bancrofti CFA was 0% (0/1,700) and that of Wb123 IgG4 antibody was 0.06% (1/1,700), with no statistically significant difference between the two rates (p = 0.99).

In the EU of Kadiolo- Kolondieba, the prevalence of Ov16-specific IgG4 was 0.19% (3/1,600) [CI = 0.04–0.50]. All 3 positives were in the previously O. volvulus-hyperendemic district of Kolondieba. In the EU of Bafoulabe-Kita-Oussoubidiagna-Yelimane, an overall prevalence of Ov16-specific IgG4 was 0.18% (3/1,700) [CI = 0.04–0.47]. These 3 Ov16 IgG4 positives were from previously O.volvulus-mesoendemic district of Kita.

Conclusions/Significance

The SD Bioline Onchocerciasis/LF IgG4 Rapid test appears to be a good tool for integrated exposure measures of LF and onchocerciasis in co-endemic areas.

]]>
<![CDATA[Development of a preliminary in vitro drug screening assay based on a newly established culturing system for pre-adult fifth-stage Onchocerca volvulus worms]]> https://www.researchpad.co/article/5c4a305ed5eed0c4844bfe74

Background

The human filarial parasite Onchocerca volvulus is the causative agent of onchocerciasis (river blindness). It causes blindness in 270,000 individuals with an additional 6.5 million suffering from severe skin pathologies. Current international control programs focus on the reduction of microfilaridermia by annually administering ivermectin for more than 20 years with the ultimate goal of blocking of transmission. The adult worms of O. volvulus can live within nodules for over 15 years and actively release microfilariae for the majority of their lifespan. Therefore, protracted treatment courses of ivermectin are required to block transmission and eventually eliminate the disease. To shorten the time to elimination of this disease, drugs that successfully target macrofilariae (adult parasites) are needed. Unfortunately, there is no small animal model for the infection that could be used for discovery and screening of drugs against adult O. volvulus parasites. Here, we present an in vitro culturing system that supports the growth and development of O. volvulus young adult worms from the third-stage (L3) infective stage.

Methodology/Principal findings

In this study we optimized the culturing system by testing several monolayer cell lines to support worm growth and development. We have shown that the optimized culturing system allows for the growth of the L3 worms to L5 and that the L5 mature into young adult worms. Moreover, these young O. volvulus worms were used in preliminary assays to test putative macrofilaricidal drugs and FDA-approved repurposed drugs.

Conclusion

The culture system we have established for O. volvulus young adult worms offers a promising new platform to advance drug discovery against the human filarial parasite, O. volvulus and thus supports the continuous pursuit for effective macrofilaricidal drugs. However, this in vitro culturing system will have to be further validated for reproducibility before it can be rolled out as a drug screen for decision making in macrofilaricide drug development programs.

]]>
<![CDATA[In-plate recapturing of a dual-tagged recombinant Fasciola antigen (FhLAP) by a monoclonal antibody (US9) prevents non-specific binding in ELISA]]> https://www.researchpad.co/article/5c5df361d5eed0c4845811da

Recombinant proteins expressed in E. coli are frequently purified by immobilized metal affinity chromatography (IMAC). By means of this technique, tagged proteins containing a polyhistidine sequence can be obtained up to 95% pure in a single step, but some host proteins also bind with great affinity to metal ions and contaminate the sample. A way to overcome this problem is to include a second tag that is recognized by a preexistent monoclonal antibody (mAb) in the gene encoding the target protein, allowing further purification. With this strategy, the recombinant protein can be directly used as target in capture ELISA using plates sensitized with the corresponding mAb. As a proof of concept, in this study we engineered a Trichinella-derived tag (MTFSVPIS, recognized by mAb US9) into a His-tagged recombinant Fasciola antigen (rFhLAP) to make a new chimeric recombinant protein (rUS9-FhLAP), and tested its specificity in capture and indirect ELISAs with sera from sheep and cattle. FhLAP was selected since it was previously reported to be immunogenic in ruminants and is expressed in soluble form in E. coli, which anticipates a higher contamination by host proteins than proteins expressed in inclusion bodies. Our results showed that a large number of sera from non-infected ruminants (mainly cattle) reacted in indirect ELISA with rUS9-FhLAP after single-step purification by IMAC, but that this reactivity disappeared testing the same antigen in capture ELISA with mAb US9. These results demonstrate that the 6XHis and US9 tags can be combined when double purification of recombinant proteins is required.

]]>
<![CDATA[A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response]]> https://www.researchpad.co/article/5c4a305fd5eed0c4844bfeae

The natural history of schistosome infection in the mammalian host is determined by CD4+ T helper responses mounted against different parasite life cycle stages. A T helper 2 (TH2) response to schistosome eggs is required for host survival and establishment of chronic infection. However, a TH2 cell-derived cytokine also contributes to an immune milieu that is conducive to schistosome growth and development. Thus, the same responses that allow for host survival have been co-opted by schistosomes to facilitate parasite development and transmission, underscoring the significance of CD4+ T cell responses to both worms and eggs in the natural history of schistosome infection. Here we show that a cathepsin B1 cysteine protease secreted by schistosome worms not only induces TH2 responses, but also TH1 and TH17 responses, by a mechanism that is dependent on the proteolytic activity of the enzyme. Further investigation revealed that, in addition to the expected TH1 and TH2 responses, acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated at the onset of oviposition. TH17 responses are implicated in the development of severe egg-induced pathology. The regulation of worm-induced TH17 responses during acute infection could therefore influence the expression of high and low pathology states as infection progresses.

]]>
<![CDATA[New insights of the local immune response against both fertile and infertile hydatid cysts]]> https://www.researchpad.co/article/5c5b5259d5eed0c4842bc6ca

Background

Cystic echinococcosis is caused by the metacestode of the zoonotic flatworm Echinococcus granulosus. Within the viscera of the intermediate host, the metacestode grows as a unilocular cyst known as hydatid cyst. This cyst is comprised of two layers of parasite origin: germinal and laminated layers, and one of host origin: the adventitial layer, that encapsulates the parasite. This adventitial layer is composed of collagen fibers, epithelioid cells, eosinophils and lymphocytes. To establish itself inside the host, the germinal layer produces the laminated layer, and to continue its life cycle, generates protoscoleces. Some cysts are unable to produce protoscoleces, and are defined as infertile cysts. The molecular mechanisms involved in cyst fertility are not clear, however, the host immune response could play a crucial role.

Methodology/Principal findings

We collected hydatid cysts from both liver and lungs of slaughtered cattle, and histological sections of fertile, infertile and small hydatid cysts were stained with haematoxylin-eosin. A common feature observed in infertile cysts was the disorganization of the laminated layer by the infiltration of host immune cells. These infiltrating cells eventually destroy parts of laminated layer. Immunohistochemical analysis of both parasite and host antigens, identify these cells as cattle macrophages and are present inside the cysts associated to germinal layer.

Conclusions/Significance

This is the first report that indicates to cell from immune system present in adventitial layer of infertile bovine hydatid cysts could disrupt the laminated layer, infiltrating and probably causing the infertility of cyst.

]]>
<![CDATA[Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium]]> https://www.researchpad.co/article/5c52186ad5eed0c4847981f8

Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits.

]]>
<![CDATA[Follow-up study of high-dose praziquantel therapy for cerebral sparganosis]]> https://www.researchpad.co/article/5c466524d5eed0c484517a5b

Background

Cerebral sparganosis is the most serious complication of human sparganosis. Currently, there is no standard for the treatment of inoperable patients. Conventional-dose praziquantel therapy is the most reported treatment. However, the therapeutic outcomes are not very effective. High-dose praziquantel therapy is a useful therapeutic choice for many parasitic diseases that is well tolerated by patients, but it has not been sufficiently evaluated for cerebral sparganosis. This study aims to observe the prognoses following high-dose praziquantel therapy in inoperable patients and the roles of MRI and peripheral eosinophil absolute counts during follow-up.

Methodology

Baseline and follow-up epidemiological, clinical, radiological and therapeutic data related to 10 inoperable patients with cerebral sparganosis that were treated with repeated courses of high-dose praziquantel therapy, with each course consisting of 25 mg/kg thrice daily for 10 days were assessed, followed by analyses of the prognoses, MRI findings and peripheral eosinophil absolute counts.

Principal findings

Baseline clinical data: the clinical symptoms recorded included seizures, hemiparesis, headache, vomiting and altered mental status. Peripheral blood eosinophilia was found in 3 patients. The baseline radiological findings were as follows. Motile lesions were observed in 10 patients, including aggregated ring-like enhancements, tunnel signs, serpiginous and irregular enhancements. Nine of the 10 patients had varying degrees of white matter degeneration, cortical atrophy and ipsilateral ventricle dilation. The follow-up clinical data were as follows. Clinical symptom relief was found in 8 patients, symptoms were eliminated in 1 patient, and symptoms showed no change from baseline in 1 patient. Peripheral blood eosinophilia was found in 2 patients. The follow-up radiological findings were as follows. Motile lesions that were transformed into stable, chronic lesions were found in 8 patients, and motile lesions that were eliminated completely were found in 2 patients.

Conclusions

High-dose praziquantel therapy for cerebral sparganosis is effective. The radiological outcomes of motile lesions are an important indicator during the treatment process, especially during follow-ups after clinical symptoms have improved. Peripheral eosinophil absolute counts cannot be used as an effective prognostic indicator.

]]>
<![CDATA[General contextual effects on neglected tropical disease risk in rural Kenya]]> https://www.researchpad.co/article/5c269762d5eed0c48470f5f8

The neglected tropical diseases (NTDs) are characterized by their tendency to cluster within groups of people, typically the poorest and most marginalized. Despite this, measures of clustering, such as within-group correlation or between-group heterogeneity, are rarely reported from community-based studies of NTD risk. We describe a general contextual analysis that uses multi-level models to partition and quantify variation in individual NTD risk at multiple grouping levels in rural Kenya. The importance of general contextual effects (GCE) in structuring variation in individual infection with Schistosoma mansoni, the soil-transmitted helminths, Taenia species, and Entamoeba histolytica/dispar was examined at the household-, sublocation- and constituency-levels using variance partition/intra-class correlation co-efficients and median odds ratios. These were compared with GCE for HIV, Plasmodium falciparum and Mycobacterium tuberculosis. The role of place of residence in shaping infection risk was further assessed using the spatial scan statistic. Individuals from the same household showed correlation in infection for all pathogens, and this was consistently highest for the gastrointestinal helminths. The lowest levels of household clustering were observed for E. histolytica/dispar, P. falciparum and M. tuberculosis. Substantial heterogeneity in individual infection risk was observed between sublocations for S. mansoni and Taenia solium cysticercosis and between constituencies for infection with S. mansoni, Trichuris trichiura and Ascaris lumbricoides. Large overlapping spatial clusters were detected for S. mansoni, T. trichiura, A. lumbricoides, and Taenia spp., which overlapped a large cluster of elevated HIV risk. Important place-based heterogeneities in infection risk exist in this community, and these GCEs are greater for the NTDs and HIV than for TB and malaria. Our findings suggest that broad-scale contextual drivers shape infectious disease risk in this population, but these effects operate at different grouping-levels for different pathogens. A general contextual analysis can provide a foundation for understanding the complex ecology of NTDs and contribute to the targeting of interventions.

]]>
<![CDATA[Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells]]> https://www.researchpad.co/article/5c3d00e7d5eed0c4840368ed

The secretion of extracellular vesicles (EVs) in helminth parasites is a constitutive mechanism that promotes survival by improving their colonization and adaptation in the host tissue. In the present study, we analyzed the production of EVs from supernatants of cultures of Echinococcus granulosus protoscoleces and metacestodes and their interaction with dendritic cells, which have the ability to efficiently uptake and process microbial antigens, activating T lymphocytes. To experimentally increase the release of EVs, we used loperamide, a calcium channel blocker that increases the cytosolic calcium level in protoscoleces and EV secretion. An exosome-like enriched EV fraction isolated from the parasite culture medium was characterized by dynamic light scattering, transmission electron microscopy, proteomic analysis and immunoblot. This allowed identifying many proteins including: small EV markers such as TSG101, SDCBP, ALIX, tetraspanins and 14-3-3 proteins; proteins involved in vesicle-related transport; orthologs of mammalian proteins involved in the immune response, such as basigin, Bp29 and maspardin; and parasite antigens such as antigen 5, P29 and endophilin-1, which are of special interest due to their role in the parasite-host relationship. Finally, studies on the EVs-host cell interaction demonstrated that E. granulosus exosome-like vesicles were internalized by murine dendritic cells, inducing their maturation with increase of CD86 and with a slight down-regulation in the expression of MHCII molecules. These data suggest that E. granulosus EVs could interfere with the antigen presentation pathway of murine dendritic cells inducing immunoregulation in the host. Further studies are needed to better understand the role of these vesicles in parasite survival and as diagnostic markers and new vaccines.

]]>