ResearchPad - hematopoiesis https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Preliminary study: Health and performance assessment in broiler chicks following application of six different hatching egg disinfection protocols]]> https://www.researchpad.co/article/elastic_article_14617 As part of a Germany-wide project that evaluates strategies for the reduction of multi-resistant bacteria along the poultry production chain, the impact of different hatching egg disinfectants on hatchability and health of the broiler chicks was evaluated. Animal trials were conducted with extended-spectrum beta-lactamase- (ESBL) producing Escherichia (E.) coli contaminated hatching eggs and six disinfection protocols that used formaldehyde, hydrogen peroxide, low-energy electron irradiation, peracetic acid and an essential oil preparation. Each protocol was tested on a group of 50 chicks. Equally sized positive and negative control groups were carried along for each trial. Hatchability, mortality and body weight were recorded as performance parameters. During necropsy of half of the animals in each group on day 7 and 14 respectively, macroscopic abnormalities, body weight, weights of liver and gut convolute were recorded and a range of tissue samples for histological examination were collected as part of the health assessment. A decrease in hatchability was recorded for spray application of essential oils. Body weight development was overall comparable, in several groups even superior, to the Ross308 performance objectives, but a reduced performance was seen in the hydrogen peroxide group. Histologically, lymphoid follicles were regularly seen in all sampled organs and no consistent differences were observed between contaminated and non-contaminated groups. Significances were infrequently and inconsistently seen. In conclusion, remarkable findings were a decrease in hatchability caused by the essential oils spray application and a reduced body weight development in the hydrogen peroxide group. Therefore, the essential oils preparation as spray application was deemed inappropriate in practice, while the application of hydrogen peroxide was considered in need of further research. The other trial results indicate that the tested hatching egg disinfectants present a possible alternative to formaldehyde.

]]>
<![CDATA[Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation]]> https://www.researchpad.co/article/elastic_article_11054 Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.

]]>
<![CDATA[Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells]]> https://www.researchpad.co/article/elastic_article_11037 Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.

]]>
<![CDATA[A computational model to understand mouse iron physiology and disease]]> https://www.researchpad.co/article/5c390b8bd5eed0c48491d25f

It is well known that iron is an essential element for life but is toxic when in excess or in certain forms. Accordingly there are many diseases that result directly from either lack or excess of iron. Yet many molecular and physiological aspects of iron regulation have only been discovered recently and others are still elusive. There is still no good quantitative and dynamic description of iron absorption, distribution, storage and mobilization that agrees with the wide array of phenotypes presented in several iron-related diseases. The present work addresses this issue by developing a mathematical model of iron distribution in mice calibrated with ferrokinetic data and subsequently validated against data from mouse models of iron disorders, such as hemochromatosis, β-thalassemia, atransferrinemia and anemia of inflammation. To adequately fit the ferrokinetic data required inclusion of the following mechanisms: a) transferrin-mediated iron delivery to tissues, b) induction of hepcidin by transferrin-bound iron, c) ferroportin-dependent iron export regulated by hepcidin, d) erythropoietin regulation of erythropoiesis, and e) liver uptake of NTBI. The utility of the model to simulate disease interventions was demonstrated by using it to investigate the outcome of different schedules of transferrin treatment in β-thalassemia.

]]>
<![CDATA[Mutation, drift and selection in single-driver hematologic malignancy: Example of secondary myelodysplastic syndrome following treatment of inherited neutropenia]]> https://www.researchpad.co/article/5c3d00e3d5eed0c484036660

Cancer development is driven by series of events involving mutations, which may become fixed in a tumor via genetic drift and selection. This process usually includes a limited number of driver (advantageous) mutations and a greater number of passenger (neutral or mildly deleterious) mutations. We focus on a real-world leukemia model evolving on the background of a germline mutation. Severe congenital neutropenia (SCN) evolves to secondary myelodysplastic syndrome (sMDS) and/or secondary acute myeloid leukemia (sAML) in 30–40%. The majority of SCN cases are due to a germline ELANE mutation. Acquired mutations in CSF3R occur in >70% sMDS/sAML associated with SCN. Hypotheses underlying our model are: an ELANE mutation causes SCN; CSF3R mutations occur spontaneously at a low rate; in fetal life, hematopoietic stem and progenitor cells expands quickly, resulting in a high probability of several tens to several hundreds of cells with CSF3R truncation mutations; therapeutic granulocyte colony-stimulating factor (G-CSF) administration early in life exerts a strong selective pressure, providing mutants with a growth advantage. Applying population genetics theory, we propose a novel two-phase model of disease development from SCN to sMDS. In Phase 1, hematopoietic tissues expand and produce tens to hundreds of stem cells with the CSF3R truncation mutation. Phase 2 occurs postnatally through adult stages with bone marrow production of granulocyte precursors and positive selection of mutants due to chronic G-CSF therapy to reverse the severe neutropenia. We predict the existence of the pool of cells with the mutated truncated receptor before G-CSF treatment begins. The model does not require increase in mutation rate under G-CSF treatment and agrees with age distribution of sMDS onset and clinical sequencing data.

]]>
<![CDATA[ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion]]> https://www.researchpad.co/article/5c1c2d8fd5eed0c4844645ef

Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.

]]>
<![CDATA[Niche TWIST1 is critical for maintaining normal hematopoiesis and impeding leukemia progression]]> https://www.researchpad.co/article/5c1c2d7fd5eed0c484464167

The bone marrow microenvironment regulates normal and malignant hematopoiesis, but the underlying molecular mechanisms remain poorly defined. Using a chimeric mice model, we demonstrate that Twist1 deletion in the bone marrow microenvironment results in alteration of multiple niche cells as well as downregulated expression of major hematopoietic stem cell supportive factors. The perturbed microenvironment reduces hematopoietic stem cell homing and retention, impairs hematopoietic stem cell self-renewal and induces myeloid skewing. Nevertheless, it accelerates the progression of MLL-AF9 leukemia, which is partially mediated by Jagged-2-dependent Notch signaling. Our data provide the first demonstration of a pivotal role of TWIST1 in favoring normal hematopoiesis and hampering leukemia development. They also bring new insights into the role of the bone marrow niche in driving the development of acute myeloid leukemia, and suggest possible new avenues, exploiting the niche, to improve leukemia treatments.

]]>
<![CDATA[New ways to make a blood cell]]> https://www.researchpad.co/article/5989dab4ab0ee8fa60bac4e9

In a niche under the skin in Drosophila larvae, blood cells called plasmatocytes can transform into other classes of blood cell.

]]>
<![CDATA[Modeling Reveals Bistability and Low-Pass Filtering in the Network Module Determining Blood Stem Cell Fate]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba9766

Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad—a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

]]>
<![CDATA[Hematopoietic Stem Cells Contribute to Lymphatic Endothelium]]> https://www.researchpad.co/article/5989db16ab0ee8fa60bcd407

Background

Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC).

Methodology/Principal Findings

Following the transfer of marked HSCs into irradiated recipients, donor-derived LEC that co-express the lymphatic endothelial markers Lyve-1 and VEGFR-3 were identified in several tissues. HSC-derived LEC persisted for more than 12 months and contributed to ∼3–4% of lymphatic vessels. Donor-derived LECs were not detected in mice transplanted with common myeloid progenitors and granulocyte/macrophage progenitors, suggesting that myeloid lineage commitment is not a requisite step in HSC contribution to lymphatic endothelium. Analysis of parabiotic mice revealed direct evidence for the existence of functional, circulating lymphatic progenitors in the absence of acute injury. Furthermore, the transplantation of HSCs into ApcMin/+ mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.

Conclusions/Significance

Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system.

]]>
<![CDATA[SOD2 Deficient Erythroid Cells Up-Regulate Transferrin Receptor and Down-Regulate Mitochondrial Biogenesis and Metabolism]]> https://www.researchpad.co/article/5989db2eab0ee8fa60bd1c64

Background

Mice irradiated and reconstituted with hematopoietic cells lacking manganese superoxide dismutase (SOD2) show a persistent hemolytic anemia similar to human sideroblastic anemia (SA), including characteristic intra-mitochondrial iron deposition. SA is primarily an acquired, clonal marrow disorder occurring in individuals over 60 years of age with uncertain etiology.

Methodology/Principal Findings

To define early events in the pathogenesis of this murine model of SA, we compared erythroid differentiation of Sod2-/- and normal bone marrow cells using flow cytometry and gene expression profiling of erythroblasts. The predominant transcriptional differences observed include widespread down-regulation of mitochondrial metabolic pathways and mitochondrial biogenesis. Multiple nuclear encoded subunits of complexes I-IV of the electron transport chain, ATP synthase (complex V), TCA cycle and mitochondrial ribosomal proteins were coordinately down-regulated in Sod2-/- erythroblasts. Despite iron accumulation within mitochondria, we found increased expression of transferrin receptor, Tfrc, at both the transcript and protein level in SOD2 deficient cells, suggesting deregulation of iron delivery. Interestingly, there was decreased expression of ABCb7, the gene responsible for X-linked hereditary SA with ataxia, a component required for iron-sulfur cluster biogenesis.

Conclusions/Significance

These results indicate that in erythroblasts, mitochondrial oxidative stress reduces expression of multiple nuclear genes encoding components of the respiratory chain, TCA cycle and mitochondrial protein synthesis. An additional target of particular relevance for SA is iron:sulfur cluster biosynthesis. By decreasing transcription of components of cluster synthesis machinery, both iron utilization and regulation of iron uptake are impacted, contributing to the sideroblastic phenotype.

]]>
<![CDATA[Divergent Pathways in COS-7 Cells Mediate Defective Internalization and Intracellular Routing of Truncated G-CSFR Forms in SCN/AML]]> https://www.researchpad.co/article/5989daa3ab0ee8fa60ba6a54

Background

Expression of truncated G-CSFR forms in patients with SCN/AML induces hyperproliferation and prolonged cell survival. Previously, we showed that ligand internalization is delayed and degradation of truncated G-CSFR forms is defective in patients with SCN/AML.

Methodology/Principal Findings

In this study, we investigated the potential roles of dileucine and tyrosine-based motifs within the cytoplasmic domain of the G-CSFR in modulating ligand/receptor internalization. Using standard binding assays with radiolabeled ligand and COS-7 cells, substitutions in the dileucine motif or deletion of tyrosine residues in the G-CSFR did not alter internalization. Attachment of the transferrin receptor YTRF internalization motif to a truncated G-CSFR form from a patient with SCN/AML corrected defective internalization, but not receptor degradation suggesting that receptor internalization and degradation occur independently via distinct domains and/or processes.

Conclusions

Our data suggest that distinct domains within the G-CSFR mediate separate processes for receptor internalization and degradation. Our findings using standard binding assays differ from recently published data utilizing flow cytometry.

]]>
<![CDATA[In Vitro Megakaryocyte Differentiation and Proplatelet Formation in Ph-Negative Classical Myeloproliferative Neoplasms: Distinct Patterns in the Different Clinical Phenotypes]]> https://www.researchpad.co/article/5989daffab0ee8fa60bc5f08

Background

Ph-negative myeloproliferative neoplasms (MPNs) are clonal disorders that include primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Although the pathogenesis of MPNs is still incompletely understood, an involvement of the megakaryocyte lineage is a distinctive feature.

Methodology/Principal Findings

We analyzed the in vitro megakaryocyte differentiation and proplatelet formation in 30 PMF, 8 ET, 8 PV patients, and 17 healthy controls (CTRL). Megakaryocytes were differentiated from peripheral blood CD34+ or CD45+ cells in the presence of thrombopoietin. Megakaryocyte output was higher in MPN patients than in CTRL with no correlation with the JAK2 V617F mutation. PMF-derived megakaryocytes displayed nuclei with a bulbous appearance, were smaller than ET- or PV-derived megakaryocytes and formed proplatelets that presented several structural alterations. In contrast, ET- and PV-derived megakaryocytes produced more proplatelets with a striking increase in bifurcations and tips compared to both control and PMF. Proplatelets formation was correlated with platelet counts in patient peripheral blood. Patients with pre-fibrotic PMF had a pattern of megakaryocyte proliferation and proplatelet formation that was similar to that of fibrotic PMF and different from that of ET.

Conclusions/Significance

In conclusion, MPNs are associated with high megakaryocyte proliferative potential. Profound differences in megakaryocyte morphology and proplatelet formation distinguish PMF, both fibrotic and prefibrotic, from ET and PV.

]]>
<![CDATA[Heritable and Lineage-Specific Gene Knockdown in Zebrafish Embryo]]> https://www.researchpad.co/article/5989db03ab0ee8fa60bc751a

Background

Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders.

Principal Finding

Here, we report that multiple copies of small hairpin RNA (shRNA) are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA). The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and α-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively.

Significance

This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms.

]]>
<![CDATA[Mitochondrial Localization of Vitamin D Receptor in Human Platelets and Differentiated Megakaryocytes]]> https://www.researchpad.co/article/5989db3bab0ee8fa60bd4e0c

Background

Like other steroid hormones, vitamin D elicits both transcriptional events and rapid non genomic effects. Vitamin D receptor (VDR) localization and mechanisms of VDR-triggered non genomic responses are still controversial. Although anticoagulant effects of vitamin D have been reported and VDR signalling has been characterized in monocytes and vascular cells, nothing is known about VDR expression and functions in human platelets, anucleated fragments of megakaryocytes which are known targets of other steroids.

Methodology/Principal Findings

In this study we characterized the expression and cellular localization of VDR in human platelets and in a megakaryocyte lineage. Human platelets and their TPA-differentiated precursors expressed a classical 50 kDa VDR protein, which increased with megakaryocytes maturation. By biochemical fractionation studies we demonstrated the presence of the receptor in the soluble and mitochondrial compartment of human platelets, and the observation was confirmed by immunoelectron microscopy analysis. Similar localization was found in mature megakaryocytes, where besides its classical nuclear localization the receptor was evident as soluble and mitochondria resident protein.

Conclusions

The results reported here suggest that megakaryocytopoiesis and platelet activation, which are calcium-dependent events, might be modulated by a mitochondrial non genomic activity of VDR. These data open challenging future studies on VDR physiological role in platelets and more generally in mitochondria.

]]>
<![CDATA[Co-Culture of Hematopoietic Stem/Progenitor Cells with Human Osteblasts Favours Mono/Macrophage Differentiation at the Expense of the Erythroid Lineage]]> https://www.researchpad.co/article/5989da00ab0ee8fa60b73dd1

Hematopoietic stem cells (HSCs) are located in the bone marrow in a specific microenvironment referred as the hematopoietic stem cell niche, where HSCs interact with a variety of stromal cells. Though several components of the stem cell niche have been identified, the regulatory mechanisms through which such components regulate the stem cell fate are still unknown. In order to address this issue, we investigated how osteoblasts (OBs) can affect the molecular and functional phenotype of Hematopoietic Stem/Progenitor Cells (HSPCs) and vice versa. For this purpose, human CD34+ cells were cultured in direct contact with primary human OBs. Our data showed that CD34+ cells cultured with OBs give rise to higher total cell numbers, produce more CFUs and maintain a higher percentage of CD34+CD38- cells compared to control culture. Moreover, clonogenic assay and long-term culture results showed that co-culture with OBs induces a strong increase in mono/macrophage precursors coupled to a decrease in the erythroid ones. Finally, gene expression profiling (GEP) allowed us to study which signalling pathways were activated in the hematopoietic cell fraction and in the stromal cell compartment after coculture. Such analysis allowed us to identify several cytokine-receptor networks, such as WNT pathway, and transcription factors, as TWIST1 and FOXC1, that could be activated by co-culture with OBs and could be responsible for the biological effects reported above. Altogether our results indicate that OBs are able to affect HPSCs on 2 different levels: on one side, they increase the immature progenitor pool in vitro, on the other side, they favor the expansion of the mono/macrophage precursors at the expense of the erythroid lineage.

]]>
<![CDATA[AltitudeOmics: Rapid Hemoglobin Mass Alterations with Early Acclimatization to and De-Acclimatization from 5260 m in Healthy Humans]]> https://www.researchpad.co/article/5989db07ab0ee8fa60bc8c4b

It is classically thought that increases in hemoglobin mass (Hbmass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hbmass in healthy men and women at sea level (SL) and 5260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5260 m following descent to 1525 m for either 7 or 21 days. Compared to SL, absolute Hbmass was not different at ALT1 but increased by 3.7±5.8% (mean ± SD; n = 20; p<0.01) at ALT7 and 7.6±6.6% (n = 21; p<0.001) at ALT16. Following descent to 1525 m, Hbmass was reduced compared to ALT16 (−6.0±3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hbmass between groups that descended for 7 (−6.3±3.0%; n = 13) versus 21 days (−5.7±5.0; n = 7). The loss in Hbmass following 7 days at 1525 m was correlated with an increase in serum ferritin (r = −0.64; n = 13; p<0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hbmass increases within 7 days of ascent to 5260 m but that the altitude-induced Hbmass adaptation is lost within 7 days of descent to 1525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hbmass adaptations in response to severe hypoxia.

]]>
<![CDATA[Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6abb4

Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (<seconds). Intriguingly, only the two circulating myeloid cell types have increased short time scale compliance and flow better through microfluidic constrictions. Moreover, all three differentiated cell types reduce their steady-state viscosity by more than 50% and show over 140% relative increase in their ability to migrate through tissue-like pores at long time-scales (>minutes), compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies.

]]>
<![CDATA[Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1]]> https://www.researchpad.co/article/5989db12ab0ee8fa60bcc503

Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region.

]]>
<![CDATA[Grsf1-Induced Translation of the SNARE Protein Use1 Is Required for Expansion of the Erythroid Compartment]]> https://www.researchpad.co/article/5989daa8ab0ee8fa60ba8764

Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5′UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5′UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5′UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site.

]]>