ResearchPad - hemiptera Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Sublethal and transgenerational effects of sulfoxaflor on the demography and feeding behaviour of the mirid bug <i>Apolygus lucorum</i>]]> Sulfoxaflor, the first commercially available sulfoximine insecticide, has been used for the control of sap-feeding insect pests such as plant bugs and aphids on a variety of crops. However, its sublethal effects on the mirid bug Apolygus lucorum, one of the key insect pests of Bt cotton and fruit trees in China, have not been fully examined. Here, we evaluated the demography and feeding behaviour of A. lucorum exposed to sulfoxaflor. The leaf-dipping bioassay showed that the LC10 and LC30 of sulfoxaflor against 3rd-instar nymphs of this insect were 1.23 and 8.37 mg L-1, respectively. The LC10 significantly extended the nymphal duration and decreased the oviposition period by 5.29 days and female fecundity by 56.99% in the parent generation (F0). The longer duration of egg, 5th-instar nymphs, preadult, and male adult longevity were observed in the F1 generation (F1) at LC10. At the LC30, the duration of egg and 1st-instar nymph, female adult longevity, and oviposition period of the F1 were significantly shorter, while the nymphal duration in the F0 and duration of 5th-instar nymphs, preadult survival rate, and male adult longevity in the F1 significantly increased. The net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) in the F1 were not significantly affected by these two concentrations, whereas the mean generation time (T) was lower at the LC30. Additionally, the probe counts and cells mixture feeding time were markedly lengthened by the LC10 and LC30, respectively, when A. lucorum nymphs exposed to sulfoxaflor fed on Bt cotton plants without insecticides. These results clearly indicate that sulfoxaflor causes sublethal effects on A. lucorum and the transgenerational effects depend on the tested concentrations.

<![CDATA[Scolopostethus affinis (Schilling) (Hemiptera, Heteroptera, Rhyparochromidae, Drymini): a new alien established in North America]]>

Scolopostethus affinis, a species native to the Palearctic region, is reported from two localities in Montreal, Quebec. The species appears established and breeding in Quebec and is a new alien species in North America. A description of S. affinis is given, with illustrations, and details of the life cycle and diagnostic characters.

<![CDATA[Transcriptomic Immune Response of the Cotton Stainer Dysdercus fasciatus to Experimental Elimination of Vitamin-Supplementing Intestinal Symbionts]]>

The acquisition and vertical transmission of bacterial symbionts plays an important role in insect evolution and ecology. However, the molecular mechanisms underlying the stable maintenance and control of mutualistic bacteria remain poorly understood. The cotton stainer Dysdercus fasciatus harbours the actinobacterial symbionts Coriobacterium glomerans and Gordonibacter sp. in its midgut. The symbionts supplement limiting B vitamins and thereby significantly contribute to the host’s fitness. In this study, we experimentally disrupted the symbionts’ vertical transmission route and performed comparative transcriptomic analyses of genes expressed in the gut of aposymbiotic (symbiont-free) and control individuals to study the host immune response in presence and absence of the mutualists. Annotation of assembled cDNA reads identified a considerable number of genes involved in the innate immune system, including different protein isoforms of several immune effector proteins (specifically i-type lysozyme, defensin, hemiptericin, and pyrrhocoricin), suggesting the possibility for a highly differentiated response towards the complex resident microbial community. Gene expression analyses revealed a constitutive expression of transcripts involved in signal transduction of the main insect immune pathways, but differential expression of certain antimicrobial peptide genes. Specifically, qPCRs confirmed the significant down-regulation of c-type lysozyme and up-regulation of hemiptericin in aposymbiotic individuals. The high expression of c-type lysozyme in symbiont-containing bugs may serve to lyse symbiont cells and thereby harvest B-vitamins that are necessary for subsistence on the deficient diet of Malvales seeds. Our findings suggest a sophisticated host response to perturbation of the symbiotic gut microbiota, indicating that the innate immune system not only plays an important role in combating pathogens, but also serves as a communication interface between host and symbionts.

<![CDATA[Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity]]>

Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.

<![CDATA[Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper]]>

Mouthparts are among the most important sensory and feeding structures in insects and comparative morphological study may help explain differences in feeding behavior and diet breadth among species. The spotted lanternfly Lycorma delicatula (White) (Hemiptera: Fulgoromorpha: Fulgoridae) is a polyphagous agricultural pest originating in China, recently established and becoming widespread in Korea, and more recently introduced into eastern North America. It causes severe economic damage by sucking phloem sap and the sugary excrement produced by nymphs and adults serves as a medium for sooty mold. To facilitate future study of feeding mechanisms in this insect, the fine-structural morphology of mouthparts focusing on the distribution of sensilla located on the labium in adult L. delicatula was observed using a scanning electron microscope. The mouthparts consist of a small cone-shaped labrum, a tubular labium and a stylet fascicle consisting of two inner interlocked maxillary stylets partially surrounded by two shorter mandibular stylets similar to those found in other hemipteran insects. The five-segmented labium is unusual (most other Fulgoromorpha have four segments) and is provided with several types of sensilla and cuticular processes situated on the apex of its distal labial segment. In general, nine types of sensilla were found on the mouthparts. Six types of sensilla and four types of cuticular processes are present on sensory fields of the labial apex. The proposed taxonomic and functional significance of the sensilla are discussed. Morphological similarities in the interlocking mechanism of the stylets suggest a relationship between Fulgoromorpha and Heteroptera.

<![CDATA[Variations on a Theme: Antennal Lobe Architecture across Coleoptera]]>

Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system.

<![CDATA[Life-History Traits of Macrolophus pygmaeus with Different Prey Foods]]>

Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a generalist predatory mirid widely used in augmentative biological control of various insect pests in greenhouse tomato production in Europe, including the invasive tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). However, its biocontrol efficacy often relies on the presence of alternative prey. The present study aimed at evaluating the effect of various prey foods (Ephestia kuehniella eggs, Bemisia tabaci nymphs, Tuta absoluta eggs and Macrosiphum euphorbiae nymphs) on some life history traits of M. pygmaeus. Both nymphal development and adult fertility of M. pygmaeus were significantly affected by prey food type, but not survival. Duration of nymphal stage was higher when M. pygmaeus fed on T. absoluta eggs compared to the other prey. Mean fertility of M. pygmaeus females was greatest when fed with B. tabaci nymphs, and was greater when offered M. euphorbiae aphids and E. kuehniella eggs than when offered T. absoluta eggs. Given the low quality of T. absoluta eggs, the efficacy of M. pygmaeus to control T. absoluta may be limited in the absence of other food sources. Experiments for assessing effectiveness of generalist predators should involve the possible impact of prey preference as well as a possible prey switching.

<![CDATA[Transovum Transmission of Trypanosomatid Cysts in the Milkweed Bug, Oncopeltus fasciatus]]>

Leptomonas wallacei is a trypanosomatid that develops promastigotes and cystic forms in the gut of the hemipteran insect Oncopeltus fasciatus. Insect trypanosomatids are thought to be solely transmitted from one host to another through the ingestion of parasite-contaminated feces. However, here we show that L. wallacei cysts present on the eggshells of eggs laid by O. fasciatus can also act as infective forms that are transmitted to the insect offspring. Newly hatched O. faciatus nymphs are parasite-free, but some of them become contaminated with L. wallacei after feeding on eggshell remnants. The present study is the first report of transovum transmission of a trypanosomatid, a process that may have a relevant role in parasite’s within-host population dynamics.

<![CDATA[Genetic Insights into Graminella nigrifrons Competence for Maize fine streak virus Infection and Transmission]]>


Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood.


RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation.


Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process.

<![CDATA[Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila]]>

In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.