ResearchPad - hemostasis https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The contact system proteases play disparate roles in streptococcal sepsis]]> https://www.researchpad.co/article/elastic_article_11064 Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.

]]>
<![CDATA[Defective AP-3-dependent VAMP8 trafficking impairs Weibel-Palade body exocytosis in Hermansky-Pudlak Syndrome type 2 blood outgrowth endothelial cells]]> https://www.researchpad.co/article/Nc84be0a3-1427-4bc4-949b-fb309b0fbbb0

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 β1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1. Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1−/− endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 β1, also the μ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8−/−endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.

]]>
<![CDATA[Erythrocyte-Derived Microparticles Supporting Activated Protein C-Mediated Regulation of Blood Coagulation]]> https://www.researchpad.co/article/5989da23ab0ee8fa60b7fcf1

Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle surface is suitable for the anticoagulant reactions of the protein C system, which may be important to balance the initiation and propagation of coagulation in vivo.

]]>
<![CDATA[Hemostatic function to regulate perioperative bleeding in patients undergoing spinal surgery: A prospective observational study]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be10e8

Although bleeding is a common complication of surgery, routine laboratory tests have been demonstrated to have a low ability to predict perioperative bleeding. Better understanding of hemostatic function during surgery would lead to identification of high-risk patients for bleeding. Here, we aimed to elucidate hemostatic mechanisms to determine perioperative bleeding. We prospectively enrolled 104 patients undergoing cervical spinal surgery without bleeding diathesis. Blood sampling was performed just before the operation. Volumes of perioperative blood loss were compared with the results of detailed laboratory tests assessing primary hemostasis, secondary hemostasis, and fibrinolysis. Platelet aggregations induced by several agonists correlated with each other, and only two latent factors determined inter-individual difference. Platelet aggregability independently determined perioperative bleeding. We also identified low levels of plasminogen-activator inhibitor-1 (PAI-1) and α2-plasmin inhibitor to be independent risk factors for intraoperative and postoperative bleeding, respectively. Most important independent factor to determine postoperative bleeding was body weight. Of note, obese patients with low levels of PAI-1 became high-risk patients for bleeding during surgery. Our data suggest that bleeding after surgical procedure may be influenced by inter-individual differences of hemostatic function including platelet function and fibrinolysis, even in the patients without bleeding diathesis.

]]>
<![CDATA[RGS10 Negatively Regulates Platelet Activation and Thrombogenesis]]> https://www.researchpad.co/article/5989db10ab0ee8fa60bcc140

Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role(s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states.

]]>
<![CDATA[Clinical endoscopic management and outcome of post-endoscopic sphincterotomy bleeding]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdfe05

Post-endoscopic sphincterotomy bleeding is a common complication of biliary sphincterotomy, and the incidence varies from 1% to 48%. It can be challenging to localize the bleeder or to administer various interventions through a side-viewing endoscope. This study aimed to evaluate the risk factors of post-endoscopic sphincterotomy bleeding and the outcome of endoscopic intervention therapies. We retrospectively reviewed the records of 513 patients who underwent biliary sphincterotomy in Mackay Memorial Hospital between 2011 and 2016. The blood biochemistry, comorbidities, indication for sphincterotomy, severity of bleeding, endoscopic features of bleeder, and type of endoscopic therapy were analyzed. Post-endoscopic sphincterotomy bleeding occurred in 65 (12.6%) patients. Forty-five patients had immediate bleeding and 20 patients had delayed bleeding. The multivariate analysis of risk factors associated with post-endoscopic sphincterotomy bleeding were liver cirrhosis (P = 0.029), end-stage renal disease (P = 0.038), previous antiplatelet drug use (P<0.001), and duodenal ulcer (P = 0.023). The complications of pancreatitis and cholangitis were higher in the bleeding group, with statistical significance. Delayed bleeding occurred within 1 to 7 days (mean, 2.5 days), and 60% (12/20) of the patients received endoscopic evaluation. In the delayed bleeding group, the successful hemostasis rate was 71.4% (5/7), and 65% (13/20) of the patients had ceased bleeding without endoscopic hemostasis therapy. Comparison of different therapeutic modalities showed that cholangitis was higher in patients who received epinephrine spray (P = 0.042) and pancreatitis was higher in patients who received epinephrine injection and electrocoagulation (P = 0.041 and P = 0.039 respectively). Clinically, post-endoscopic sphincterotomy bleeding and further endoscopic hemostasis therapy increase the complication rate of pancreatitis and cholangitis. Realizing the effectiveness of each therapeutic modalities and appropriate management of different levels bleeding are important.

]]>
<![CDATA[Analysis of Thrombophilia Test Ordering Practices at an Academic Center: A Proposal for Appropriate Testing to Reduce Harm and Cost]]> https://www.researchpad.co/article/5989da73ab0ee8fa60b9587b

Ideally, thrombophilia testing should be tailored to the type of thrombotic event without the influence of anticoagulation therapy or acute phase effects which can give false positive results that may result in long term anticoagulation. However, thrombophilia testing is often performed routinely in unselected patients. We analyzed all consecutive thrombophilia testing orders during the months of October and November 2009 at an academic teaching institution. Information was extracted from electronic medical records for the following: indication, timing, comprehensiveness of tests, anticoagulation therapy at the time of testing, and confirmatory repeat testing, if any. Based on the findings of this analysis, we established local guidelines in May 2013 for appropriate thrombophilia testing, primarily to prevent testing during the acute thrombotic event or while the patient is on anticoagulation. We then evaluated ordering practices 22 months after guideline implementation. One hundred seventy-three patients were included in the study. Only 34% (58/173) had appropriate indications (unprovoked venous or arterial thrombosis or pregnancy losses). 51% (61/119) with an index clinical event were tested within one week of the event. Although 46% (79/173) were found to have abnormal results, only 46% of these had the abnormal tests repeated for confirmation with 54% potentially carrying a wrong diagnosis with long term anticoagulation. Twenty-two months after guideline implementation, there was an 84% reduction in ordered tests. Thus, this study revealed that a significant proportion of thrombophilia testing was inappropriately performed. We implemented local guidelines for thrombophilia testing for clinicians, resulting in a reduction in healthcare costs and improved patient care.

]]>
<![CDATA[Delphi-Consensus Weights for Ischemic and Bleeding Events to Be Included in a Composite Outcome for RCTs in Thrombosis Prevention]]> https://www.researchpad.co/article/5989db0aab0ee8fa60bc9d3e

Background and Objectives

To weight ischemic and bleeding events according to their severity to be used in a composite outcome in RCTs in the field of thrombosis prevention.

Method

Using a Delphi consensus method, a panel of anaesthesiology and cardiology experts rated the severity of thrombotic and bleeding clinical events. The ratings were expressed on a 10-point scale. The median and quartiles of the ratings of each item were returned to the experts. Then, the panel members evaluated the events a second time with knowledge of the group responses from the first round. Cronbach's a was used as a measure of homogeneity for the ratings. The final rating for each event corresponded to the median rating obtained at the last Delphi round.

Results

Of 70 experts invited, 32 (46%) accepted to participate. Consensus was reached at the second round as indicated by Cronbach's a value (0.99 (95% CI 0.98-1.00)) so the Delphi was stopped. Severity ranged from under-popliteal venous thrombosis (median = 3, Q1 = 2; Q3 = 3) to ischemic stroke or intracerebral hemorrhage with severe disability at 7 days and massive pulmonary embolism (median = 9, Q1 = 9; Q3 = 9). Ratings did not differ according to the medical specialty of experts.

Conclusions

These ratings could be used to weight ischemic and bleeding events of various severity comprising a composite outcome in the field of thrombosis prevention.

]]>
<![CDATA[Platelet Activation after Presyncope by Lower Body Negative Pressure in Humans]]> https://www.researchpad.co/article/5989db0dab0ee8fa60bcaafc

Central hypovolemia elevates hemostatic activity which is essential for preventing exsanguination after trauma, but platelet activation to central hypovolemia has not been described. We hypothesized that central hypovolemia induced by lower body negative pressure (LBNP) activates platelets. Eight healthy subjects were exposed to progressive central hypovolemia by LBNP until presyncope. At baseline and 5 min after presyncope, hemostatic activity of venous blood was evaluated by flow cytometry, thrombelastography, and plasma markers of coagulation and fibrinolysis. Cell counts were also determined. Flow cytometry revealed that LBNP increased mean fluorescence intensity of PAC-1 by 1959±455 units (P<0.001) and percent of fluorescence-positive platelets by 27±18%-points (P = 0.013). Thrombelastography demonstrated that coagulation was accelerated (R-time decreased by 0.8±0.4 min (P = 0.001)) and that clot lysis increased (LY60 by 6.0±5.8%-points (P = 0.034)). Plasma coagulation factor VIII and von Willebrand factor ristocetin cofactor activity increased (P = 0.011 and P = 0.024, respectively), demonstrating increased coagulation activity, while von Willebrand factor antigen was unchanged. Plasma protein C activity and tissue-type plasminogen activator increased (P = 0.007 and P = 0.017, respectively), and D-dimer increased by 0.03±0.02 mg l−1 (P = 0.031), demonstrating increased fibrinolytic activity. Plasma prothrombin time and activated partial thromboplastin time were unchanged. Platelet count increased by 15±13% (P = 0.014) and red blood cells by 9±4% (P = 0.002). In humans, LBNP-induced presyncope activates platelets, as evidenced by increased exposure of active glycoprotein IIb/IIIa, accelerates coagulation. LBNP activates fibrinolysis, similar to hemorrhage, but does not alter coagulation screening tests, such as prothrombin time and activated partial thromboplastin time. LBNP results in increased platelet counts, but also in hemoconcentration.

]]>
<![CDATA[Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice]]> https://www.researchpad.co/article/5989da19ab0ee8fa60b7c3aa

Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

]]>
<![CDATA[Collagen Can Selectively Trigger a Platelet Secretory Phenotype via Glycoprotein VI]]> https://www.researchpad.co/article/5989d9e3ab0ee8fa60b6a433

Platelets are not only central actors of hemostasis and thrombosis but also of other processes including inflammation, angiogenesis, and tissue regeneration. Accumulating evidence indicates that these “non classical” functions of platelets do not necessarily rely on their well-known ability to form thrombi upon activation. This suggests the existence of non-thrombotic alternative states of platelets activation. We investigated this possibility through dose-response analysis of thrombin- and collagen-induced changes in platelet phenotype, with regards to morphological and functional markers of platelet activation including shape change, aggregation, P-selectin and phosphatidylserine surface expression, integrin activation, and release of soluble factors. We show that collagen at low dose (0.25 µg/mL) selectively triggers a platelet secretory phenotype characterized by the release of dense- and alpha granule-derived soluble factors without causing any of the other major platelet changes that usually accompany thrombus formation. Using a blocking antibody to glycoprotein VI (GPVI), we further show that this response is mediated by GPVI. Taken together, our results show that platelet activation goes beyond the mechanisms leading to platelet aggregation and also includes alternative platelet phenotypes that might contribute to their thrombus-independent functions.

]]>
<![CDATA[Regulation of Coagulation Factor XI Expression by MicroRNAs in the Human Liver]]> https://www.researchpad.co/article/5989dac6ab0ee8fa60bb2912

High levels of factor XI (FXI) increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs) in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK) demonstrated a direct interaction between miR-181a-5p and 3′untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.

]]>
<![CDATA[Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbb9c

Introduction

Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions.

Methods

We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets.

Results

In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated.

Conclusions

Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.

]]>
<![CDATA[Impact of experimental hypercalcemia on routine haemostasis testing]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc206

Background

The blood to anticoagulant ratio is standardized according to the physiological calcium concentration in blood samples conventionally used for hemostasis testing. Specifically, one fixed volume of 0.109 mmol/L sodium citrate is added to 9 volumes of blood. Since little is known about the impact of hypercalcemia on the calcium-binding capacity of citrate, this study was planned to investigate the effect of experimental hypercalcemia on routine hemostasis testing.

Methods

Fifteen pooled citrated plasmas with matching lithium-heparin pooled plasma from patients with different values of prothrombin time (PT) were divided in three aliquots of 0.6mL each. The first paired aliquots of both citrate and lithium-heparin plasma were supplemented with 60μL of saline, the second paired aliquots with 30μL of saline and 30μL of calcium chloride and the third paired aliquots with 60μL of calcium chloride. Total and ionized calcium was measured in all aliquots of citrate and lithium-heparin plasma, whereas PT, activated partial thromboplastin time (APTT) and fibrinogen were measured in citrate plasma aliquots.

Results

Total calcium concentration gradually increased in both lithium-heparin and citrate plasma aliquots 2 and 3 compared to baseline aliquot 1. The concentration of ionized calcium also gradually increased in lithium-heparin plasma aliquots 2 and 3, whereas it remained immeasurable (i.e., <0.10 mmol/L) in all citrate plasma aliquots. No significant differences were observed for values of PT, APTT and fibrinogen in citrate plasma aliquots 2 and 3 compared to the baseline aliquot 1, with a mean bias was always comprised within the desirable quality specifications derived from biological variability data.

Conclusion

Hypercalcemia, up to severe hypercalcemia does not generate significant bias in results of first-line coagulations tests, so that hypothetical consideration of adjusting citrate-blood ratio is unjustified in hypercalcemic patients.

]]>
<![CDATA[Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor]]> https://www.researchpad.co/article/5989db32ab0ee8fa60bd2334

Recent studies have suggested that antithrombin (AT) could act as a significant physiologic regulator of FVIIa. However, in vitro studies showed that AT could inhibit FVIIa effectively only when it was bound to tissue factor (TF). Circulating blood is known to contain only traces of TF, at best. FVIIa also binds endothelial cell protein C receptor (EPCR), but the role of EPCR on FVIIa inactivation by AT is unknown. The present study was designed to investigate the role of TF and EPCR in inactivation of FVIIa by AT in vivo. Low human TF mice (low TF, ∼1% expression of the mouse TF level) and high human TF mice (HTF, ∼100% of the mouse TF level) were injected with human rFVIIa (120 µg kg−1 body weight) via the tail vein. At varying time intervals following rFVIIa administration, blood was collected to measure FVIIa-AT complex and rFVIIa antigen levels in the plasma. Despite the large difference in TF expression in the mice, HTF mice generated only 40–50% more of FVIIa-AT complex as compared to low TF mice. Increasing the concentration of TF in vivo in HTF mice by LPS injection increased the levels of FVIIa-AT complexes by about 25%. No significant differences were found in FVIIa-AT levels among wild-type, EPCR-deficient, and EPCR-overexpressing mice. The levels of FVIIa-AT complex formed in vitro and ex vivo were much lower than that was found in vivo. In summary, our results suggest that traces of TF that may be present in circulating blood or extravascular TF that is transiently exposed during normal vessel damage contributes to inactivation of FVIIa by AT in circulation. However, TF’s role in AT inactivation of FVIIa appears to be minor and other factor(s) present in plasma, on blood cells or vascular endothelium may play a predominant role in this process.

]]>
<![CDATA[Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI]]> https://www.researchpad.co/article/5989da1cab0ee8fa60b7d259

Introduction

Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.

Methods and Results

Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.

Conclusions

Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

]]>
<![CDATA[Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161]]> https://www.researchpad.co/article/5989da41ab0ee8fa60b8a16f

The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders.

]]>
<![CDATA[An Engineered Factor Va Prevents Bleeding Induced by Anticoagulant wt Activated Protein C]]> https://www.researchpad.co/article/5989dad5ab0ee8fa60bb7c29

Objective

An increased risk of bleeding is observed in patients receiving activated protein C (APC), which may be a limiting factor for the application of novel APC therapies. Since APC's therapeutic effects often require its cytoprotective activities on cells but not APC's anticoagulant activities, an agent that specifically antagonizes APC's anticoagulant effects but not its cytoprotective effects could provide an effective means to control concerns for risk of bleeding. We hypothesized that superFVa, an engineered activated FVa-variant that restores hemostasis in hemophilia could reduce APC-induced bleeding.

Approach and Results

SuperFVa was engineered with mutations of the APC cleavage sites (Arg506/306/679Gln) and a disulfide bond (Cys609-Cys1691) between the A2 and A3 domains, which augment its biological activity and cause high resistance to APC. SuperFVa normalized APC-prolonged clotting times and restored APC-suppressed thrombin generation in human and murine plasma at concentrations where wild-type (wt) FVa did not show effects. Following intravenous injection of APC into BALB/c mice, addition to whole blood ex vivo of superFVa but not wt-FVa significantly normalized whole blood clotting. Blood loss following tail clip or liver laceration was significantly reduced when superFVa was administered intravenously to BALB/c mice prior to intravenous APC-treatment. Furthermore, superFVa abolished mortality (∼50%) associated with excessive bleeding following liver laceration in mice treated with APC.

Conclusions

Our results provide proof of concept that superFVa is effective in preventing APC-induced bleeding and may provide therapeutic benefits as a prohemostatic agent in various situations where bleeding is a serious risk.

]]>
<![CDATA[Development of a Fatal Noncompressible Truncal Hemorrhage Model with Combined Hepatic and Portal Venous Injury in Normothermic Normovolemic Swine]]> https://www.researchpad.co/article/5989dab7ab0ee8fa60bad3a6

Noncompressible truncal hemorrhage and brain injury currently account for most early mortality of warfighters on the battlefield. There is no effective treatment for noncompressible truncal hemorrhage, other than rapid evacuation to a surgical facility. The availability of an effective field treatment for noncompressible truncal hemorrhage could increase the number of warfighters salvaged from this frequently-lethal scenario. Our intent was to develop a porcine model of noncompressible truncal hemorrhage with a ∼50% one-hour mortality so that we could develop new treatments for this difficult problem. Normovolemic normothermic domestic swine (barrows, 3 months old, 34–36 kg) underwent one of three injury types through a midline incision: 1) central stellate injury (N = 6); 2) excision of a portal vein branch distal to the main PV trunk (N = 6); or 3) hemi-transection of the left lateral lobe of the liver at its base (N = 10). The one-hour mortality of these injuries was 0, 82, and 40%, respectively; the final mean arterial pressure was 65, 24, and 30 mm Hg, respectively; and the final hemoglobin was 8.3, 2.3, and 3.6 g/dL, respectively. Hemi-transection of the left lateral lobe of the liver appeared to target our desired mortality rate better than the other injury mechanisms.

]]>
<![CDATA[Mice Lacking the SLAM Family Member CD84 Display Unaltered Platelet Function in Hemostasis and Thrombosis]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba7968

Background

Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity by forming thrombi at sites of vascular injury. Although the early events of thrombus formation—platelet adhesion and aggregation—have been intensively studied, less is known about the mechanisms and receptors that stabilize platelet-platelet interactions once a thrombus has formed. One receptor that has been implicated in this process is the signaling lymphocyte activation molecule (SLAM) family member CD84, which can undergo homophilic interactions and becomes phosphorylated upon platelet aggregation.

Objective

The role of CD84 in platelet physiology and thrombus formation was investigated in CD84-deficient mice.

Methods and Results

We generated CD84-deficient mice and analyzed their platelets in vitro and in vivo. Cd84−/− platelets exhibited normal activation and aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency did not affect integrin-mediated clot retraction and spreading of activated platelets on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on collagen-coated surfaces under flow ex vivo was unaltered in the blood of Cd84−/− mice. In vivo, Cd84−/− mice exhibited unaltered hemostatic function and arterial thrombus formation.

Conclusion

These results show that CD84 is dispensable for thrombus formation and stabilization, indicating that its deficiency may be functionally compensated by other receptors or that it may be important for platelet functions different from platelet-platelet interactions.

]]>