ResearchPad - herpesviruses https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment]]> https://www.researchpad.co/article/elastic_article_13826 Murine gammaherpesvirus 68 is a rodent pathogen that is closely related to the human gammaherpesviruses Epstein-Barr virus and Kaposi’s sarcoma-associated virus. All know gammaherpesviruses are associated with the development of lymphomas, as well as other cancers, in a small subset of infected individuals–particularly those with underlying defects in their immune system (i.e., transplant recipients and HIV infected patients). Because there are very limited small animal models for the human gammaherpesviruses, studies on murine gammaherepsviruses 68 can provide important insights into critical aspects of gammaherpesvirus infections and the association of these viruses with disease development. Another feature of all gammaherpesviruses is their ability to establish a chronic infection of their host–where the virus is maintained for the lifetime of the infected individual. The major target cell harboring chronic gammaherepsvirus infection are B lymphocytes–the cells in the immune system that produce antibodies in response to infections. Here we provide a detailed characterization of the populations of B lymphocytes that become infected by murine gammaherpesvirus 68. This has led to the identification of a specific population of B lymphocytes that is preferentially infected by the virus. This supports a model in which murine gammaherpesvirus infection of B lymphocytes is not random. However, it remains unclear why the virus targets this specific population of B cells for infection.

]]>
<![CDATA[First description of a herpesvirus infection in genus Lepus]]> https://www.researchpad.co/article/N2b9a02c7-7220-4716-8700-9456c07e4236

During the necropsies of Iberian hares obtained in 2018/2019, along with signs of the nodular form of myxomatosis, other unexpected external lesions were also observed. Histopathology revealed nuclear inclusion bodies in stromal cells suggesting the additional presence of a nuclear replicating virus. Transmission electron microscopy further demonstrated the presence of herpesvirus particles in the tissues of affected hares. We confirmed the presence of herpesvirus in 13 MYXV-positive hares by PCR and sequencing analysis. Herpesvirus-DNA was also detected in seven healthy hares, suggesting its asymptomatic circulation. Phylogenetic analysis based on concatenated partial sequences of DNA polymerase gene and glycoprotein B gene enabled greater resolution than analysing the sequences individually. The hare’ virus was classified close to herpesviruses from rodents within the Rhadinovirus genus of the gammaherpesvirus subfamily. We propose to name this new virus Leporid gammaherpesvirus 5 (LeHV-5), according to the International Committee on Taxonomy of Viruses standards. The impact of herpesvirus infection on the reproduction and mortality of the Iberian hare is yet unknown but may aggravate the decline of wild populations caused by the recently emerged natural recombinant myxoma virus.

]]>
<![CDATA[Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV]]> https://www.researchpad.co/article/Ndd7e3d68-7b94-48ec-a25e-5b9298486000

Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types.

]]>
<![CDATA[EBV miRNA expression profiles in different infection stages: A prospective cohort study]]> https://www.researchpad.co/article/5c6dc9c8d5eed0c48452a18f

The Epstein-Barr virus (EBV) produces different microRNAs (miRNA) with distinct regulatory functions within the infectious cycle. These viral miRNAs regulate the expression of viral and host genes and have been discussed as potential diagnostic markers or even therapeutic targets, provided that the expression profile can be unambiguously correlated to a specific stage of infection or a specific EBV-induced disorder. In this context, miRNA profiling becomes more important since the roles of these miRNAs in the pathogenesis of infections and malignancies are not fully understood. Studies of EBV miRNA expression profiles are sparse and have mainly focused on associated malignancies. This study is the first to examine the miRNA profiles of EBV reactivation and to use a correction step with seronegative patients as a reference. Between 2012 and 2017, we examined the expression profiles of 11 selected EBV miRNAs in 129 whole blood samples from primary infection, reactivation, healthy carriers and EBV seronegative patients. Three of the miRNAs could not be detected in any sample. Other miRNAs showed significantly higher expression levels and prevalence during primary infection than in other stages; miR-BHRF1-1 was the most abundant. The expression profiles from reactivation differed slightly but not significantly from those of healthy carriers, but a specific marker miRNA for each stage could not be identified within the selected EBV miRNA targets.

]]>
<![CDATA[Infectious complications and NK cell depletion following daratumumab treatment of Multiple Myeloma]]> https://www.researchpad.co/article/5c6dc9d0d5eed0c48452a224

Treatment with Daratumumab (Dara), a monoclonal anti-CD38 antibody of IgG1 subtype, is effective in patients with multiple myeloma (MM). However, Dara also impairs the cellular immunity, which in turn may lead to higher susceptibility to infections. The exact link between immune impairment and infectious complications is unclear. In this study, we report that nine out of 23 patients (39%) with progressive MM had infectious complications after Dara treatment. Five of these patients had viral infections, two developed with bacterial infections and two with both bacterial and viral infections. Two of the viral infections were exogenous, i.e. acute respiratory syncytial virus (RSV) and human metapneumovirus (hMPV), while five consisted of reactivations, i.e. one herpes simplex (HSV), 1 varicella-zoster (VZV) and three cytomegalovirus (CMV). Infections were solely seen in patients with partial response or worse. Assessment of circulating lymphocytes indicated a selective depletion of NK cells and viral reactivation after Dara treatment, however this finding does not exclude the multiple components of viral immune-surveillance that may get disabled during this monoclonal treatment in this patient cohort. These results suggest that the use of antiviral and antibacterial prophylaxis and screening of the patients should be considered.

]]>
<![CDATA[Bclaf1 critically regulates the type I interferon response and is degraded by alphaherpesvirus US3]]> https://www.researchpad.co/article/5c57e68bd5eed0c484ef366f

Type I interferon response plays a prominent role against viral infection, which is frequently disrupted by viruses. Here, we report Bcl-2 associated transcription factor 1 (Bclaf1) is degraded during the alphaherpesvirus Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) infections through the viral protein US3. We further reveal that Bclaf1 functions critically in type I interferon signaling. Knockdown or knockout of Bclaf1 in cells significantly impairs interferon-α (IFNα) -mediated gene transcription and viral inhibition against US3 deficient PRV and HSV-1. Mechanistically, Bclaf1 maintains a mechanism allowing STAT1 and STAT2 to be efficiently phosphorylated in response to IFNα, and more importantly, facilitates IFN-stimulated gene factor 3 (ISGF3) binding with IFN-stimulated response elements (ISRE) for efficient gene transcription by directly interacting with ISRE and STAT2. Our studies establish the importance of Bclaf1 in IFNα-induced antiviral immunity and in the control of viral infections.

]]>
<![CDATA[Extracellular vesicles from Kaposi Sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming]]> https://www.researchpad.co/article/5c61e941d5eed0c48496fae8

Extracellular signaling is a mechanism that higher eukaryotes have evolved to facilitate organismal homeostasis. Recent years have seen an emerging interest in the role of secreted microvesicles, termed extracellular vesicles (EV) or exosomes in this signaling network. EV contents can be modified by the cell in response to stimuli, allowing them to relay information to neighboring cells, influencing their physiology. Here we show that the tumor virus Kaposi’s Sarcoma-associated herpesvirus (KSHV) hijacks this signaling pathway to induce cell proliferation, migration, and transcriptome reprogramming in cells not infected with the virus. KSHV-EV activates the canonical MEK/ERK pathway, while not alerting innate immune regulators, allowing the virus to exert these changes without cellular pathogen recognition. Collectively, we propose that KSHV establishes a niche favorable for viral spread and cell transformation through cell-derived vesicles, all while avoiding detection.

]]>
<![CDATA[Cash transfers and HIV/HSV-2 prevalence: A replication of a cluster randomized trial in Malawi]]> https://www.researchpad.co/article/5c5ca315d5eed0c48441f0e5

Introduction

In this paper we perform a replication analysis of “Effect of a cash transfer programme for schooling on prevalence of HIV and herpes simplex type 2 in Malawi: a cluster randomised trial” by Sarah Baird and others published in “The Lancet” in 2012. The original study was a two-year cluster randomized intervention trial of never married girls aged 13–22 in Malawi. Enumeration areas were randomized to either an intervention involving cash transfer (conditional or unconditional of school enrollment) or control. The study included 1708 Malawian girls, who were enrolled at baseline and had biological testing for HIV and herpes simplex virus type 2 (HSV-2) at 18 months. The original findings showed that in the cohort of girls enrolled in school at baseline, the intervention had an effect on school enrollment, sexual outcomes, and HIV and HSV-2 prevalence. However, in the baseline school dropout cohort, the original study showed no intervention effect on HIV and HSV-2 prevalence.

Methods

We performed a replication of the study to investigate the consistency and robustness of key results reported. A pre-specified replication plan was approved and published online. Cleaned data was obtained from the original authors. A pure replication was conducted by reading the methods section and reproducing the results and tables found in the original paper. Robustness of the results were examined with alternative analysis methods in a measurement and estimation analysis (MEA) approach. A theory of change analysis was performed testing a causal pathway, the effect of intervention on HIV awareness, and whether the intervention effect depended on the wealth of the individual.

Results

The pure replication found that other than a few minor discrepancies, the original study was well replicated. However, the randomization and sampling weights could not be verified due to the lack of access to raw data and a detailed sample selection plan. Therefore, we are unable to determine how sampling influenced the results, which could be highly dependent on the sample. In MEA it was found that the intervention effect on HIV prevalence in the baseline schoolgirls cohort was somewhat sensitive to model choice, with a non-significant intervention effect for HIV depending on the statistical model used. The intervention effect on HSV-2 prevalence was more robust in terms of statistical significance, however, the odds ratios and confidence intervals differed from the original result by more than 10%. A theory of change analysis showed no effect of intervention on HIV awareness. In a causal pathway analysis, several variables were partial mediators, or potential mediators, indicating that the intervention could be working through its effect on school enrollment or selected sexual behaviors.

Conclusions

The effect of intervention on HIV prevalence in the baseline schoolgirls was sensitive to the model choice; however, HSV-2 prevalence results were confirmed. We recommend that the results from the original published analysis indicating the impact of cash transfers on HIV prevalence be treated with caution.

]]>
<![CDATA[The Human Cytomegalovirus UL38 protein drives mTOR-independent metabolic flux reprogramming by inhibiting TSC2]]> https://www.researchpad.co/article/5c536b4cd5eed0c484a485ec

Human Cytomegalovirus (HCMV) infection induces several metabolic activities that are essential for viral replication. Despite the important role that this metabolic modulation plays during infection, the viral mechanisms involved are largely unclear. We find that the HCMV UL38 protein is responsible for many aspects of HCMV-mediated metabolic activation, with UL38 being necessary and sufficient to drive glycolytic activation and induce the catabolism of specific amino acids. UL38’s metabolic reprogramming role is dependent on its interaction with TSC2, a tumor suppressor that inhibits mTOR signaling. Further, shRNA-mediated knockdown of TSC2 recapitulates the metabolic phenotypes associated with UL38 expression. Notably, we find that in many cases the metabolic flux activation associated with UL38 expression is largely independent of mTOR activity, as broad spectrum mTOR inhibition does not impact UL38-mediated induction of glycolysis, glutamine consumption, or the secretion of proline or alanine. In contrast, the induction of metabolite concentrations observed with UL38 expression are largely dependent on active mTOR. Collectively, our results indicate that the HCMV UL38 protein induces a pro-viral metabolic environment via inhibition of TSC2.

]]>
<![CDATA[Cytomegalovirus viral load parameters associated with earlier initiation of pre-emptive therapy after solid organ transplantation]]> https://www.researchpad.co/article/5c6448bcd5eed0c484c2ecea

Background

Human cytomegalovirus (HCMV) can be managed by monitoring HCMV DNA in the blood and giving valganciclovir when viral load exceeds a defined value. We hypothesised that such pre-emptive therapy should occur earlier than the standard 3000 genomes/ml (2520 IU/ml) when a seropositive donor transmitted virus to a seronegative recipient (D+R-) following solid organ transplantation (SOT).

Methods

Our local protocol was changed so that D+R- SOT patients commenced valganciclovir once the viral load exceeded 200 genomes/ml; 168 IU/ml (new protocol). The decision point remained at 3000 genomes/ml (old protocol) for the other two patient subgroups (D+R+, D-R+). Virological outcomes were assessed three years later, when 74 D+R- patients treated under the old protocol could be compared with 67 treated afterwards. The primary outcomes were changes in peak viral load, duration of viraemia and duration of treatment in the D+R- group. The secondary outcome was the proportion of D+R- patients who developed subsequent viraemia episodes.

Findings

In the D+R- patients, the median values of peak viral load (30,774 to 11,135 genomes/ml, p<0.0215) were significantly reduced on the new protocol compared to the old, but the duration of viraemia and duration of treatment were not. Early treatment increased subsequent episodes of viraemia from 33/58 (57%) to 36/49 (73%) of patients (p< 0.0743) with a significant increase (p = 0.0072) in those episodes that required treatment (16/58; 27% versus 26/49; 53%). Median peak viral load increased significantly (2,103 to 3,934 genomes/ml, p<0.0249) in the D+R+ but not in the D-R+ patient subgroups. There was no change in duration of viraemia or duration of treatment for any patient subgroup.

Interpretation

Pre-emptive therapy initiated at the first sign of viraemia post-transplant significantly reduced the peak viral load but increased later episodes of viraemia, consistent with the hypothesis of reduced antigenic stimulation of the immune system.

]]>
<![CDATA[Screening human cell lines for viral infections applying RNA-Seq data analysis]]> https://www.researchpad.co/article/5c40f795d5eed0c48438641a

Monitoring viral infections of cell cultures is largely neglected although the viruses may have an impact on the physiology of cells and may constitute a biohazard regarding laboratory safety and safety of bioactive agents produced by cell cultures. PCR, immunological assays, and enzyme activity tests represent common methods to detect virus infections. We have screened more than 300 Cancer Cell Line Encyclopedia RNA sequencing and 60 whole exome sequencing human cell lines data sets for specific viral sequences and general viral nucleotide and protein sequence assessment applying the Taxonomer bioinformatics tool developed by IDbyDNA. The results were compared with our previous findings from virus specific PCR analyses. Both, the results obtained from the direct alignment method and the Taxonomer alignment method revealed a complete concordance with the PCR results: twenty cell lines were found to be infected with five virus species. Taxonomer further uncovered a bovine polyomavirus infection in the breast cancer cell line SK-BR-3 most likely introduced by contaminated fetal bovine serum. RNA-Seq data sets were more sensitive for virus detection although a significant proportion of cell lines revealed low numbers of virus specific alignments attributable to low level nucleotide contamination during RNA preparation or sequencing procedure. Low quality reads leading to Taxonomer false positive results can be eliminated by trimming the sequence data before analysis. One further important result is that no viruses were detected that had never been shown to occur in cell cultures. The results prove that the currently applied testing of cell cultures is adequate for the detection of contamination and for the risk assessment of cell cultures. The results emphasize that next generation sequencing is an efficient tool to determine the viral infection status of human cells.

]]>
<![CDATA[Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation]]> https://www.researchpad.co/article/5c3d00f8d5eed0c48403729d

MicroRNAs (miRNAs) are post-transcriptional regulatory RNAs that can modulate cell signaling and play key roles in cell state transitions. Epstein-Barr virus (EBV) expresses >40 viral miRNAs that manipulate both viral and cellular gene expression patterns and contribute to reprogramming of the host environment during infection. Here, we identified a subset of EBV miRNAs that desensitize cells to B cell receptor (BCR) stimuli, and attenuate the downstream activation of NF-kappaB or AP1-dependent transcription. Bioinformatics and pathway analysis of Ago PAR-CLIP datasets identified multiple EBV miRNA targets related to BCR signal transduction, including GRB2, SOS1, MALT1, RAC1, and INPP5D, which we validated in reporter assays. BCR signaling is critical for B cell activation, proliferation, and differentiation, and for EBV, is linked to reactivation. In functional assays, we demonstrate that EBV miR-BHRF1-2-5p contributes to the growth of latently infected B cells through GRB2 regulation. We further determined that activities of EBV miR-BHRF1-2-5p, EBV miR-BART2-5p, and a cellular miRNA, miR-17-5p, directly regulate virus reactivation triggered by BCR engagement. Our findings provide mechanistic insight into some of the key miRNA interactions impacting the proliferation of latently infected B cells and importantly, governing the latent to lytic switch.

]]>
<![CDATA[Activation of E2F-dependent transcription by the mouse cytomegalovirus M117 protein affects the viral host range]]> https://www.researchpad.co/article/5c1813ccd5eed0c484775d94

Cytomegaloviruses (CMVs) have a highly restricted host range as they replicate only in cells of their own or closely related species. To date, the molecular mechanisms underlying the CMV host restriction remain poorly understood. However, it has been shown that mouse cytomegalovirus (MCMV) can be adapted to human cells and that adaptation goes along with adaptive mutations in several viral genes. In this study, we identify MCMV M117 as a novel host range determinant. Mutations in this gene enable the virus to cross the species barrier and replicate in human RPE-1 cells. We show that the M117 protein is expressed with early kinetics, localizes to viral replication compartments, and contributes to the inhibition of cellular DNA synthesis. Mechanistically, M117 interacts with members of the E2F transcription factor family and induces E2F target gene expression in murine and human cells. While the N-terminal part of M117 mediates E2F interaction, the C-terminal part mediates self-interaction. Both parts are required for the activation of E2F-dependent transcription. We further show that M117 is dispensable for viral replication in cultured mouse fibroblasts and endothelial cells, but is required for colonization of mouse salivary glands in vivo. Conversely, inactivation of M117 or pharmacological inhibition of E2F facilitates MCMV replication in human RPE-1 cells, whereas replacement of M117 by adenovirus E4orf6/7, a known E2F activator, prevents it. These results indicate that E2F activation is detrimental for MCMV replication in human cells. In summary, this study identifies MCMV M117 as a novel E2F activator that functions as a host range determinant by precluding MCMV replication in human cells.

]]>
<![CDATA[Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice]]> https://www.researchpad.co/article/5c12cf07d5eed0c484913d6c

The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection.

]]>
<![CDATA[STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus]]> https://www.researchpad.co/article/5c181346d5eed0c4847749b0

Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target.

]]>
<![CDATA[A pragmatic cluster randomised controlled trial of a tailored intervention to improve the initial management of suspected encephalitis]]> https://www.researchpad.co/article/5c12cf55d5eed0c4849143d0

Objective

To determine whether a tailored multifaceted implementation strategy improves the initial management of patients with suspected encephalitis.

Design

Pragmatic two arm cluster randomised controlled trial.

Setting

Hospitals within the United Kingdom.

Participants

Twenty-four hospitals nested within 12 postgraduate deaneries. Patients were identified retrospectively by searching discharge, microbiology, radiology and pharmacy records and included if they met clinical criteria or had a recorded suspicion of encephalitis.

Intervention

An implementation strategy designed to overcome barriers to change, comprising local action planning, education and training, feedback on performance, a lumbar puncture pack and a range of optional components.

Outcomes

The primary outcome was the proportion of patients with suspected encephalitis undergoing diagnostic lumbar puncture within 12 hours of admission and starting aciclovir treatment within six hours. Secondary outcomes included the proportions of adults and children who had a lumbar puncture, who had appropriate cerebrospinal fluid investigations, and who had appropriate radiological imaging within 24 hours of admission. Data were collected from patient records for 12 months before and 12 months during the intervention period, and analysed blind to allocation.

Results

13 hospitals were randomised to intervention and 11 to control (no intervention), with 266 and 223 patients with suspected encephalitis identified respectively. There was no significant difference in primary outcome between intervention and control hospitals (13.5% and 14.8% respectively, p = 0.619; treatment effect -0.188, 95% confidence interval -0.927 to 0.552), but both had improved compared to pre-intervention (8.5%).

Conclusion

The improvement in both intervention and control arms may reflect overall progress in management of encephalitis through wider awareness and education.

Trial registration

Controlled Trials: ISRCTN06886935.

]]>
<![CDATA[Study on causes of fever in primary healthcare center uncovers pathogens of public health concern in Madagascar]]> https://www.researchpad.co/article/5b60074e463d7e39c5526201

Background

The increasing use of malaria diagnostic tests reveals a growing proportion of patients with fever but no malaria. Clinicians and health care workers in low-income countries have few tests to diagnose causes of fever other than malaria although several diseases share common symptoms. We propose here to assess etiologies of fever in Madagascar to ultimately improve management of febrile cases.

Methodology

Consenting febrile outpatients aged 6 months and older were recruited in 21 selected sentinel sites throughout Madagascar from April 2014 to September 2015. Standard clinical examinations were performed, and blood and upper respiratory specimens were taken for rapid diagnostic tests and molecular assays for 36 pathogens of interest for Madagascar in terms of public health, regardless of clinical status.

Principal findings

A total of 682 febrile patients were enrolled. We detected at least one pathogen in 40.5% (276/682) of patients and 6.2% (42/682) with co-infections. Among all tested patients, 26.5% (181/682) had at least one viral infection, 17.0% (116/682) had malaria and 1.0% (7/682) presented a bacterial or a mycobacterial infection. None or very few of the highly prevalent infectious agents in Eastern Africa and Asia were detected in this study, such as zoonotic bacteria or arboviral infections.

Conclusions

These results raise questions about etiologies of fever in Malagasy communities. Nevertheless, we noted that viral infections and malaria still represent a significant proportion of causes of febrile illnesses. Interestingly our study allowed the detection of pathogens of public health interest such as Rift Valley Fever Virus but also the first case of laboratory-confirmed leptospirosis infection in Madagascar.

]]>
<![CDATA[Impact of IFN lambda 3/4 single nucleotide polymorphisms on the cytomegalovirus reactivation in autologous stem cell transplant patients]]> https://www.researchpad.co/article/5b603633463d7e4090b7ce22

Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNΔ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ΔG/ΔG), 35% (CC-TT/TT) and 29.2% (CT-TT/ΔG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ΔG/ΔG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ΔG (40%) patients. Our data suggest a negative role of TT-ΔG/ΔG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation.

]]>
<![CDATA[Gammaherpesvirus infection and malignant disease in rhesus macaques experimentally infected with SIV or SHIV]]> https://www.researchpad.co/article/5b5ff792463d7e28ade495c5

Human gammaherpesviruses are associated with malignancies in HIV infected individuals; in macaques used in non-human primate models of HIV infection, gammaherpesvirus infections also occur. Limited data on prevalence and tumorigenicity of macaque gammaherpesviruses, mostly cross-sectional analyses of small series, are available. We comprehensively examine all three-rhesus macaque gammaherpesviruses -Rhesus rhadinovirus (RRV), Rhesus Lymphocryptovirus (RLCV) and Retroperitoneal Fibromatosis Herpesvirus (RFHV) in macaques experimentally infected with Simian Immunodeficiency Virus or Simian Human Immunodeficiency Virus (SIV/SHIV) in studies spanning 15 years at the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research. We evaluated 18 animals with malignancies (16 lymphomas, one fibrosarcoma and one carcinoma) and 32 controls. We developed real time quantitative PCR assays for each gammaherpesvirus DNA viral load (VL) in malignant and non-tumor tissues; we also characterized the tumors using immunohistochemistry and in situ hybridization. Furthermore, we retrospectively quantified gammaherpesvirus DNA VL and SIV/SHIV RNA VL in longitudinally-collected PBMCs and plasma, respectively. One or more gammaherpesviruses were detected in 17 tumors; generally, one was predominant, and the relevant DNA VL in the tumor was very high compared to surrounding tissues. RLCV was predominant in tumors resembling diffuse large B cell lymphomas; in a Burkitt-like lymphoma, RRV was predominant; and in the fibrosarcoma, RFHV was predominant. Median RRV and RLCV PBMC DNA VL were significantly higher in cases than controls; SIV/SHIV VL and RLCV VL were independently associated with cancer. Local regressions showed that longitudinal VL patterns in cases and controls, from SIV infection to necropsy, differed for each gammaherpesvirus: while RFHV VL increased only slightly in all animals, RLCV and RRV VL increased significantly and continued to increase steeply in cases; in controls, VL flattened. In conclusion, the data suggest that gammaherpesviruses may play a significant role in tumorogenesis in macaques infected with immunodeficiency viruses.

]]>
<![CDATA[Structure of the herpes simplex virus portal-vertex]]> https://www.researchpad.co/article/5b49ab6f463d7e11e6cdb2e9

Herpesviruses include many important human pathogens such as herpes simplex virus, cytomegalovirus, varicella-zoster virus, and the oncogenic Epstein–Barr virus and Kaposi sarcoma–associated herpesvirus. Herpes virions contain a large icosahedral capsid that has a portal at a unique 5-fold vertex, similar to that seen in the tailed bacteriophages. The portal is a molecular motor through which the viral genome enters the capsid during virion morphogenesis. The genome also exits the capsid through the portal-vertex when it is injected through the nuclear pore into the nucleus of a new host cell to initiate infection. Structural investigations of the herpesvirus portal-vertex have proven challenging, owing to the small size of the tail-like portal-vertex–associated tegument (PVAT) and the presence of the tegument layer that lays between the nucleocapsid and the viral envelope, obscuring the view of the portal-vertex. Here, we show the structure of the herpes simplex virus portal-vertex at subnanometer resolution, solved by electron cryomicroscopy (cryoEM) and single-particle 3D reconstruction. This led to a number of new discoveries, including the presence of two previously unknown portal-associated structures that occupy the sites normally taken by the penton and the Ta triplex. Our data revealed that the PVAT is composed of 10 copies of the C-terminal domain of pUL25, which are uniquely arranged as two tiers of star-shaped density. Our 3D reconstruction of the portal-vertex also shows that one end of the viral genome extends outside the portal in the manner described for some bacteriophages but not previously seen in any eukaryote viruses. Finally, we show that the viral genome is consistently packed in a highly ordered left-handed spool to form concentric shells of DNA. Our data provide new insights into the structure of a molecular machine critical to the biology of an important class of human pathogens.

]]>