ResearchPad - homeostasis https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2]]> https://www.researchpad.co/article/elastic_article_9170 Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe−/− mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe−/− mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe−/− mice, the enzymatic activity was higher in Hfe−/− mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe−/− mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe−/− mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.

]]>
<![CDATA[An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms]]> https://www.researchpad.co/article/elastic_article_7780 Neurons generate their electrical signals by letting ions pass through their membranes. Despite this fact, most models of neurons apply the simplifying assumption that ion concentrations remain effectively constant during neural activity. This assumption is often quite good, as neurons contain a set of homeostatic mechanisms that make sure that ion concentrations vary quite little under normal circumstances. However, under some conditions, these mechanisms can fail, and ion concentrations can vary quite dramatically. Standard models are thus not able to simulate such conditions. Here, we present what to our knowledge is the first multicompartmental neuron model that accounts for ion concentration variations in a way that ensures complete and consistent ion concentration and charge conservation. In this work, we use the model to explore under which activity conditions the ion concentration variations become important for predicting the neurodynamics. We expect the model to be of great value for the field of neuroscience, as it can be used to simulate a range of pathological conditions, such as spreading depression or epilepsy, which are associated with large changes in extracellular ion concentrations.

]]>
<![CDATA[Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling]]> https://www.researchpad.co/article/Nd1230112-cc81-4a5a-ba57-11113fa6ebb5 Autophagy is dependent upon lysosomes, which fuse with the autophagosome to complete the autophagic process and whose acidic interior permits the activity of their intraluminal degradative enzymes. Chloroquine (CQ) and bafilomycin A1 (BafA) each cause alkalinisation of the lumen and thus impair lysosomal function, although by distinct mechanisms. CQ diffuses into lysosomes and undergoes protonation, while BafA inhibits the ability of the vacuolar type H+-ATPase (v-ATPase) to transfer protons into the lysosome. In the present study, we examine the impact of CQ and BafA on the activity of mammalian target of rapamycin complex 1 (mTORC1), inhibition of which is an early step in promoting autophagy. We find each compound inhibits mTORC1 signalling, without affecting levels of protein components of the mTORC1 signalling pathway. Furthermore, these effects are not related to these agents’ capacity to inhibit autophagy or the reduction in amino acid supply from lysosomal proteolysis. Instead, our data indicate that the reduction in mTORC1 signalling appears to be due to the accumulation of lysosomal storage material. However, there are differences in responses to these agents, for instance, in their abilities to up-regulate direct targets of transcription factor EB (TFEB), a substrate of mTORC1 that drives transcription of many lysosomal and autophagy-related genes. Nonetheless, our data imply that widely used agents that alkalinise intralysosomal pH are mimetics of acute lysosomal storage disorders (LSDs) and emphasise the importance of considering the result of CQ and BafA on mTORC1 signalling when interpreting the effects of these agents on cellular physiology.

]]>
<![CDATA[MEHP interferes with mitochondrial functions and homeostasis in skeletal muscle cells]]> https://www.researchpad.co/article/Na411c472-0723-403f-89af-3381276a1e18

Abstract

Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer frequently leached out from polyvinyl chloride (PVC) products and is quickly metabolized to its monoester equivalent mono(2-ethylhexyl) phthalate (MEHP) once enters organisms. Exposure to DEHP/MEHP through food chain intake has been shown to modified metabolism but its effect on the development of metabolic myopathy of skeletal muscle (SKM) has not been revealed so far. Here, we found that MEHP repressed myogenic terminal differentiation of proliferating myoblasts (PMB) and confluent myoblasts (CMB) but had weak effect on this process once it had been initiated. The transition of mitochondria (MITO) morphology from high efficient filamentary network to low efficient vesicles was triggered by MEHP, implying its negative effects on MITO functions. The impaired MITO functions was further demonstrated by reduced MITO DNA (mtDNA) level and SDH enzyme activity as well as highly increased reactive oxygen species (ROS) in cells after MEHP treatment. The expression of metabolic genes, including PDK4, CPT1b, UCP2, and HO1, was highly increased by MEHP and the promoters of PDK4 and CPT1b were also activated by MEHP. Additionally, the stability of some subunits in the oxidative phosphorylation system (OXPHOS) complexes was found to be reduced by MEHP, implying defective oxidative metabolism in MITO and which was confirmed by repressed palmitic acid oxidation in MEHP-treated cells. Besides, MEHP also blocked insulin-induced glucose uptake. Taken together, our results suggest that MEHP is inhibitory to myogenesis and is harmful to MITO functions in SKM, so its exposure should be avoided or limited.

]]>
<![CDATA[Autophagy in the mammalian nervous system: a primer for neuroscientists]]> https://www.researchpad.co/article/N0e73c24f-a1fe-42b7-b578-a6cd3225d1d0

Abstract

Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.

]]>
<![CDATA[Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro]]> https://www.researchpad.co/article/N23ff7292-a7a0-4903-9f18-e29c0a2bb86e

Abstract

Recently, protease-activated receptor 2 (PAR2) has been proved to be involved in the inflammatory response including osteoarthritis (OA). In the present study, we found that PAR2 antagonist could remarkably improve the pathological condition of OA rats in vivo. In addition, we also found that PAR2 antagonist could suppress the production of inflammatory factors (TNF-α and Cox-2), decrease the levels of MMP-1 and MMP-13, and restrain the levels of P62 proteins and aggravate the expression of LC3-II both in vivo and in vitro. Besides, in vitro, PAR2 antagonist could increase the proliferation and colony formation of chondrocytes induced with IL-1β. Moreover, PAR2 antagonist could decrease the expression of expressions of p-p38, p-IκBα and p-NF-κB in vitro. However, PAR2 agonist exhibited the opposite effects. Furthermore, SB203580, a p38 MAPK inhibitor, could remarkably promote the proliferation of chondrocytes induced with IL-1β, could alleviate the production of TNF-α and Cox-2, could down-regulate the protein expressions of MMP-1 and MMP-13, and could decrease the expression of P62 and increase the expressions of LC3-II of chondrocytes induced with IL-1β. Importantly, SB203580 could reverse the effects of PAR2 agonist on the functions of chondrocytes induced with IL-1β. Taken together, the present data suggest that down-regulation of PAR2 can ameliorate OA through inducing autophagy via regulation of MAPK/NF-κB signaling pathway in vivo and in vitro, and PAR2 can be considered as a potential candidate to treat OA.

]]>
<![CDATA[The cholesterol synthesis enzyme lanosterol 14α-demethylase is post-translationally regulated by the E3 ubiquitin ligase MARCH6]]> https://www.researchpad.co/article/N7ada06cb-4da8-499c-84b8-f972af66c4fd

Cholesterol synthesis is a tightly controlled pathway, with over 20 enzymes involved. Each of these enzymes can be distinctly regulated, helping to fine-tune the production of cholesterol and its functional intermediates. Several enzymes are degraded in response to increased sterol levels, whilst others remain stable. We hypothesised that an enzyme at a key branch point in the pathway, lanosterol 14α-demethylase (LDM) may be post-translationally regulated. Here, we show that the preceding enzyme, lanosterol synthase is stable, whilst LDM is rapidly degraded. Surprisingly, this degradation is not triggered by sterols. However, the E3 ubiquitin ligase membrane-associated ring-CH-type finger 6 (MARCH6), known to control earlier rate-limiting steps in cholesterol synthesis, also control levels of LDM and the terminal cholesterol synthesis enzyme, 24-dehydrocholesterol reductase. Our work highlights MARCH6 as the first example of an E3 ubiquitin ligase that targets multiple steps in a biochemical pathway and indicates new facets in the control of cholesterol synthesis.

]]>
<![CDATA[Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy]]> https://www.researchpad.co/article/Nd3338d73-9e0d-4a6b-860f-bb34607d1e3d

Abstract

Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs.

Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II).

Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.

]]>
<![CDATA[Activity-dependent switches between dynamic regimes of extracellular matrix expression]]> https://www.researchpad.co/article/Ndfacbadd-d1b4-4759-ab64-7c15dc34928b

Experimental studies highlight the important role of the extracellular matrix (ECM) in the regulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn, the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-called critical period of neural development, stabilizing the efficient configurations of neural networks in the brain. ECM is locally remodeled by proteases secreted and activated in an activity-dependent manner into the extracellular space and this process is important for physiological synaptic plasticity. We ask if ECM remodeling may be exaggerated under pathological conditions and enable activity-dependent switches between different regimes of ECM expression. We consider an analytical model based on known mechanisms of interaction between neuronal activity and expression of ECM, ECM receptors and ECM degrading proteases. We demonstrate that either inhibitory or excitatory influence of ECM on neuronal activity may lead to the bistability of ECM expression, so two stable stationary states are observed. Noteworthy, only in the case when ECM has predominant inhibitory influence on neurons, the bistability is dependent on the activity of proteases. Excitatory ECM-neuron feedback influences may also result in spontaneous oscillations of ECM expression, which may coexist with a stable stationary state. Thus, ECM-neuronal interactions support switches between distinct dynamic regimes of ECM expression, possibly representing transitions into disease states associated with remodeling of brain ECM.

]]>
<![CDATA[VGLL4 plays a critical role in heart valve development and homeostasis]]> https://www.researchpad.co/article/5c784fb6d5eed0c4840073d9

Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease.

]]>
<![CDATA[Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey]]> https://www.researchpad.co/article/5c990272d5eed0c484b97e62

The triglyceride glucose (TyG) index, a product of triglyceride and fasting glucose, is a reliable marker for insulin resistance (IR). Obesity is also known to be closely related with IR. Recently, the efficiency of TyG-related markers that combine obesity markers with TyG index has been studied; however, earlier studies were limited in number and the results were inconsistent. Therefore, in this study, we investigated the efficiency of several combinations of TyG index and obesity indices, namely, body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR), in reflecting IR. Data were obtained from the Korean National Health and Nutrition Examination Survey from 2007–2010. A total of 11,149 subjects (4,777 men and 6,372 women) were included. IR was defined as the homeostasis model assessment for IR (HOMA-IR) of above the 75th percentile for each gender. Logistic regression analysis was performed after adjusting for confounding factors, to compare and identify the associations of the 4 parameters (TyG index, TyG-BMI, TyG-WC, and TyG-WHtR) with IR. For each parameter, odds ratios (OR) and 95% confidence intervals (CIs) of quartiles 2–4 were calculated and compared with quartile 1 as a reference. A receiver operating characteristic (ROC) curve analysis was conducted to evaluate the ability of each parameter to predict IR. The adjusted ORs of quartile 4 in comparison with quartile 1 (95% CIs) for IR were 7.60 (6.52–8.87) for TyG index, 12.82 (10.89–15.10) for TyG-BMI, 16.29 (13.70–19.38) for TyG-WC, and 14.86 (12.53–17.62) for TyG-WHtR. The areas under the ROC curve for each parameter were 0.690 for TyG index, 0.748 for TyG-BMI, 0.731 for TyG-WC, and 0.733 for TyG-WHtR. In conclusion, TyG-BMI was found to be superior to other parameters for IR prediction. We propose TyG-BMI as an alternative marker for assessing IR in clinical settings.

]]>
<![CDATA[Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization]]> https://www.researchpad.co/article/5c61e93cd5eed0c48496fa58

Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.

]]>
<![CDATA[Mucosal cell populations may contribute to peripheral immune abnormalities in HIV-infected subjects introducing cART with moderate immune-suppression]]> https://www.researchpad.co/article/5c6f153bd5eed0c48467af19

HIV infection causes the progressive depletion of CD4+ T-lymphocytes and profound modifications of T-cell homeostasis, which persist despite virologically-suppressive treatment and have been linked to a worse clinical outcome. Enduring alterations of the gastrointestinal tract may represent the underlying pathogenic mechanisms of these phenomena. Twenty-six HIV-infected subjects were assessed over a 12-month period following the introduction of antiretroviral therapy. 18 uninfected individuals were enrolled as controls. Parameters of peripheral T-cell homeostasis (activation, maturation), gastrointestinal function (microbial translocation, gut inflammation, fecal microbiota composition) and mucosal immunity (CD4+CCR6+CD161+, CD4+CCR9+α4β7+, stem cell memory CD4+/CD8+ T-cells) were assessed. CD4+CCR6+CD161+ cells were depleted in HIV-infected untreated subjects and maintained significantly lower levels compared to controls, despite the introduction of effective antiviral treatment. The frequency of gut-homing CD4+CCR9+α4β7+ cells was also impaired in untreated infection and correlated with the HIV RNA load and CD4+HLADR+CD38+; during therapy, we observed a contraction of this pool in the peripheral blood and the loss of its correlation with antigenic exposure/immune activation. A partial correction of the balance between stem cell memory pools and T-cell homeostasis was registered following treatment. In HIV-infected subjects with moderate immune-suppression, antiretroviral therapy has a marginal impact on mucosal immune populations which feature distinctive kinetics in the periphery, possibly reflecting their diverse recruitment from the blood to the mucosa. The persistent defects in mucosal immunity may fuel peripheral T-cell abnormalities through diverse mechanisms, including the production of IL-17/IL-22, cellular permissiveness to infection and regulation of T-lymphocyte maturation.

]]>
<![CDATA[Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients’ skin fibroblasts]]> https://www.researchpad.co/article/5c61e8b3d5eed0c48496efc5

Classical Ehlers-Danlos syndrome (cEDS) is a dominant inherited connective tissue disorder mainly caused by mutations in the COL5A1 and COL5A2 genes encoding type V collagen (COLLV), which is a fibrillar COLL widely distributed in a variety of connective tissues. cEDS patients suffer from skin hyperextensibility, abnormal wound healing/atrophic scars, and joint hypermobility. Most of the causative variants result in a non-functional COL5A1 allele and COLLV haploinsufficiency, whilst COL5A2 mutations affect its structural integrity. To shed light into disease mechanisms involved in cEDS, we performed gene expression profiling in skin fibroblasts from four patients harboring haploinsufficient and structural mutations in both disease genes. Transcriptome profiling revealed significant changes in the expression levels of different extracellular matrix (ECM)-related genes, such as SPP1, POSTN, EDIL3, IGFBP2, and C3, which encode both matricellular and soluble proteins that are mainly involved in cell proliferation and migration, and cutaneous wound healing. These gene expression changes are consistent with our previous protein findings on in vitro fibroblasts from other cEDS patients, which exhibited reduced migration and poor wound repair owing to COLLV disorganization, altered deposition of fibronectin into ECM, and an abnormal integrin pattern. Microarray analysis also indicated the decreased expression of DNAJB7, VIPAS39, CCPG1, ATG10, SVIP, which encode molecular chaperones facilitating protein folding, enzymes regulating post-Golgi COLLs processing, and proteins acting as cargo receptors required for endoplasmic reticulum (ER) proteostasis and implicated in the autophagy process. Patients’ cells also showed altered mRNA levels of many cell cycle regulating genes including CCNE2, KIF4A, MKI67, DTL, and DDIAS. Protein studies showed that aberrant COLLV expression causes the disassembly of itself and many structural ECM constituents including COLLI, COLLIII, fibronectin, and fibrillins. Our findings provide the first molecular evidence of significant gene expression changes in cEDS skin fibroblasts highlighting that defective ECM remodeling, ER homeostasis and autophagy might play a role in the pathogenesis of this connective tissue disorder.

]]>
<![CDATA[Epidermal growth factor and its influencing variables in healthy children and adults]]> https://www.researchpad.co/article/5c5369cbd5eed0c484a46735

Background & objective

Epidermal growth factor (EGF) stimulates cell proliferation and differentiation after binding to its receptor. Next to its role in magnesium homeostasis, EGF disturbances have been described in oncology, diabetes and autism spectrum disorders. The aim of this study was to determine EGF serum and urine values for both healthy children and adults. Next, we investigated the relation between several variables and urinary and serum EGF concentrations.

Methods

Both healthy adults (n = 50) and children (n = 78) were included. Serum and urinary EGF concentrations were measured with ELISA technology.

Results

Serum EGF was inversely correlated with age (r = —0.873; p<0.001) and positively correlated with serum magnesium (r = 0.597; p<0.001). The urinary EGF was also inversely correlated with age (r = -0.855; p<0.001). In adults and children older than 13 years of age, the urinary EGF significantly differed between sexes (p = 0.001). Urinary EGF was positively correlated with serum magnesium (r = 0.583; p<0.001) and creatinine clearance (r = 0.524; p<0.001) and negatively correlated with the fractional excretion of magnesium (r = 0.248; p = 0.014). In a multivariate model, age and serum magnesium remained independently related to serum EGF while age, serum EGF and serum magnesium remained independently related to urinary EGF.

Conclusions

This study provides valuable insights in urinary and serum EGF patterns in healthy subjects. By systematically correcting EGF for body surface, significant correlations with age, gender and magnesium were observed.

]]>
<![CDATA[<i>PLoS Genetics</i> Issue Image | Vol. 15(1) January 2019]]> https://www.researchpad.co/article/5c5ca275d5eed0c48441e41f

DNA repair during meiosis and chromosomal bridges.

Meiotic cells respond to DNA damage triggering diverse repair mechanisms in a cell cycle-dependent manner. Sequential activation of these mechanisms contribute to accurately maintain genome integrity. However, when spermatocytes are exposed to exogenous DNA damaging agents, like gamma radiation, repair homeostasis may be stressed and chromosomes sometimes engage in aberrant connections with non-homologous chromosomes. Super-resolution fluorescence image (STED) of two meiotic bivalents labelled with an antibody against the SYCP3 protein of the synaptonemal complex. Parallel lines represent the trajectory of homologous chromosomes within each bivalent. A protein filament bridges from one bivalent to the other, connecting two non-homologous chromosomes. See Enguita-Marruedo et al.

Download January's cover page.

Image Credit: Marta Martín-Ruiz

]]>
<![CDATA[Glycosaminoglycans from Alzheimer’s disease hippocampus have altered capacities to bind and regulate growth factors activities and to bind tau]]> https://www.researchpad.co/article/5c390c03d5eed0c48491f63f

Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer’s disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer’s disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer’s disease brain.

]]>
<![CDATA[Glucocorticoid response to both predictable and unpredictable challenges detected as corticosterone metabolites in collared flycatcher droppings]]> https://www.researchpad.co/article/5c2544c8d5eed0c48442b891

In most vertebrate animals, glucocorticoid hormones are the chief mediators of homeostasis in response to ecological conditions and as they progress through their lifecycle. In addition, glucocorticoids are a major part of the stress response and stress induced elevations of the hormone can make it difficult to assess glucocorticoid secretion in response to changes in life-stage and current environmental conditions in wild animals. Particularly when quantifying circulating levels of glucocorticoids in the blood which fluctuate rapidly in response to stress. An alternative method of quantifying glucocorticoids is as hormone metabolites in faeces or urine giving a historical sample related to the gut passage time and urinary tract that is less sensitive to stressful events which cause spikes in the circulating hormone level. Although the concentration of glucocorticoid metabolites are influenced by faecal mass thereby potentially affecting any differences in hormone metabolites detected amongst samples. In the present study, we aimed to detect changes in levels of corticosterone, the primary bird glucocorticoid, in relation to the phase of reproduction, in a breeding population of collared flycatchers by sampling corticosterone metabolites in droppings. We also tested how corticosterone metabolite concentrations were affected by ambient temperature and related to body condition in adult birds. Our results indicate that the upregulation of corticosterone between incubation and nestling feeding in female birds is crucial for successful reproduction in this species. Also, females appear to downregulate corticosterone during incubation in response to lower ambient temperature and poorer body condition. Our results did not indicate a relationship between dropping mass and corticosterone metabolite concentrations, which suggests that our findings were linked to the regulation of corticosterone in response to predictable and unpredictable challenges.

]]>
<![CDATA[Interacting circadian and homeostatic processes with opportunity cost: A mathematical model of sleep with application to two mammalian species]]> https://www.researchpad.co/article/5c1ab874d5eed0c4840281b7

This paper introduces a new model of sleep for mammals. It extends the classic ‘two-process’ model of sleep to account for differences in external circumstances. We apply this model to previously-collected data on elephants and sloths, comparing sleep patterns in the wild with sleep patterns in captivity. We find that the model does very well in explaining sleeping patterns for both types of animals, in both the captive state and in the wild state.

]]>
<![CDATA[FSP1-positive fibroblasts are adipogenic niche and regulate adipose homeostasis]]> https://www.researchpad.co/article/5b8685d940307c7363ff63b0

Adipocyte progenitors reside in the stromal vascular fraction (SVF) of adipose tissues that are composed of fibroblasts, immune cells, and endothelial cells. It remains to be elucidated how the SVF regulates adipocyte progenitor fate determination and adipose homeostasis. Here, we report that fibroblast-specific protein-1 (FSP1)+ fibroblasts in the SVF are essential to adipose homeostasis. FSP1+ fibroblasts, devoid of adipogenic potential, are adjacent to the preadipocytes in the SVF. Ablation of FSP1+ fibroblasts in mice severely diminishes fat content of adipose depots. Activation of canonical Wnt signaling in the FSP1+ fibroblasts results in gradual loss of adipose tissues and resistance to diet-induced obesity. Alterations in the FSP1+ fibroblasts reduce platelet-derived growth factor (PDGF)-BB signaling and result in the loss of preadipocytes. Reduced PDGF-BB signaling, meanwhile, impairs the adipogenic differentiation capability of preadipocytes by regulating matrix metalloproteinase (MMP) expression, extracellular matrix remodeling, and the activation of Yes-associated protein (YAP) signaling. Thus, FSP1+ fibroblasts are an important niche essential to the maintenance of the preadipocyte pool and its adipogenic potential in adipose homeostasis.

]]>