ResearchPad - human-aging https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells]]> https://www.researchpad.co/article/elastic_article_10134 Hutchinson-Gilford progeria syndrome (HGPS, or classical progeria) is a rare genetic disorder, characterized by premature aging, and caused by a de novo point mutation (C608G) within the lamin A/C gene (LMNA), producing an abnormal lamin A protein, termed progerin. Accumulation of progerin causes nuclear abnormalities and cell cycle arrest ultimately leading to cellular senescence. Autophagy impairment is a hallmark of cellular aging, and the rescue of this proteostasis mechanism delays aging progression in HGPS cells. We have previously shown that the endogenous Neuropeptide Y (NPY) increases autophagy in hypothalamus, a brain area already identified as a central regulator of whole-body aging. We also showed that NPY mediates caloric restriction-induced autophagy. These results are in accordance with other studies suggesting that NPY may act as a caloric restriction mimetic and plays a role as a lifespan and aging regulator. The aim of the present study was, therefore, to investigate if NPY could delay HGPS premature aging phenotype. Herein, we report that NPY increases autophagic flux and progerin clearance in primary cultures of human dermal fibroblasts from HGPS patients. NPY also rescues nuclear morphology and decreases the number of dysmorphic nuclei, a hallmark of HGPS cells. In addition, NPY decreases other hallmarks of aging as DNA damage and cellular senescence. Altogether, these results show that NPY rescues several hallmarks of cellular aging in HGPS cells, suggesting that NPY can be considered a promising strategy to delay or block the premature aging of HGPS.

]]>
<![CDATA[Allele-Specific Transcript Abundance: A Pilot Study in Healthy Centenarians]]> https://www.researchpad.co/article/elastic_article_10132 The genetic basis of healthy aging and longevity remains largely unexplained. One hypothesis as to why long-lived individuals do not appear to have a lower number of common-complex disease variants, is that despite carrying risk variants, they express disease-linked alleles at a lower level than the wild-type alleles. Allele-specific abundance (ASA) is the different transcript abundance of the two haplotypes of a diploid individual. We sequenced the transcriptomes of four healthy centenarians and four mid-life controls. CIBERSORT was used to estimate blood cell fractions: neutrophils were the most abundant source of RNA, followed by CD8+ T cells, resting NK cells, and monocytes. ASA variants were more common in noncoding than coding regions. Centenarians and controls had a comparable distribution of ASA variants by predicted effect, and we did not observe an overall bias in expression toward major or minor alleles. Immune pathways were most highly represented among the gene set that showed ASA. Although we found evidence of ASA in disease-associated genes and transcription factors, we did not observe any differences in the pattern of expression between centenarians and controls in this small pilot study.

]]>
<![CDATA[Glutathione Serum Levels and Rate of Multimorbidity Development in Older Adults]]> https://www.researchpad.co/article/elastic_article_10131 We aimed to investigate the association between baseline levels of total serum glutathione (tGSH) and rate of chronic disease accumulation over time. The study population (n = 2,596) was derived from a population-based longitudinal study on ≥60-year-olds living in Stockholm. Participants were clinically assessed at baseline, 3- and 6-year follow-ups. Multimorbidity was measured as the number of chronic conditions from a previously built list of 60 diseases. Linear mixed models were applied to analyze the association between baseline tGSH levels and the rate of multimorbidity development over 6 years. We found that at baseline, participants with ≥4 diseases had lower tGSH levels than participants with no chronic conditions (3.3 vs 3.6 µmol/L; p < .001). At follow-up, baseline levels of tGSH were inversely associated with the rate of multimorbidity development (β * time: −0.044, p < .001) after adjusting for age, sex, education, levels of serum creatinine, C-reactive protein, albumin, body mass index, smoking, and time of dropout or death. In conclusion, serum levels of tGSH are inversely associated with multimorbidity development; the association exists above and beyond the link between tGSH and specific chronic conditions. Our findings support the hypothesis that tGSH is a biomarker of multisystem dysregulation that eventually leads to multimorbidity.

]]>